
CSCI 4320 November 18, 2003

Slide 1

Administrivia

• Homework 5 due Thursday.

• Homework 6 on Web tomorrow, due next Tuesday. Short.

Slide 2

Minute Essay From Last Lecture

• One student thought Homework 4 was much harder than previous

assignments. Do you agree? If so, why?

About evenly split, a few more agreed.

CSCI 4320 November 18, 2003

Slide 3

Filesystem Implementation — Recap

• Recall idea of filesystems — directory entry for a file points to something we

can use to find file’s blocks:

– First block and size of contiguous sequence.

– First block of linked list of blocks.

– Entry in FAT, which points to first block and holds linked lists.

– I-node, which contains list of blocks.

Directory entry can also contain file attributes, or they can be stored

elsewhere (e.g., in i-node).

• Notice how this is somewhat analogous to memory management — similar

tradeoffs.

• Must also manage free space. Issues include . . .

Slide 4

Blocksize

• “I/O software” can provide a device-independent blocksize (and translate to

cylinder/track/sector disk addresses).

• How big should blocks be?

– What if they’re really big?

– What if they’re really small?

– Usually compromise, also consider page size.



CSCI 4320 November 18, 2003

Slide 5

Managing Free Space — Free List

• One way to track which blocks are free — list of free blocks, kept on disk.

• How this works:

– Keep one block of this list in memory.

– Delete entries when files are created/expanded, add entries when files are

deleted.

– If block becomes empty/full, replace it.

Slide 6

Managing Free Space — Bitmap

• Another way to track which blocks are free — “bitmap” with one bit for each

block on disk, also kept on disk.

• How this works:

– Keep one block of map in memory.

– Modify entries as for free list.

• Usually requires less space.

CSCI 4320 November 18, 2003

Slide 7

Filesystem Reliability — Backups

• Why do backups? sometimes data is more valuable than physical medium,

and might need to

– Recover from disaster (rare).

– Recover from stupidity (less rare – hence “recycle bin” idea).

• Many issues involved — which files to back up, how to store backup media,

etc., etc. — see textbook.

Slide 8

Filesystem Reliability — Consistency Checks

• Can easily happen that true state of filesystem is represented by a

combination of what’s on disk and what’s in memory — a problem if shutdown

is not orderly.

• Solution is a “fix-up” program (Unix fsck, Windows scandisk). Kinds of

checking we can do:

– Consistency check: For each block, how many files does it appear in

(treating free list as a file)? If other than 1, problem — fix it as best we can.

– File consistency check: For each file, count number of links to it and

compare with number in its i-node. If not equal, change i-node.

– Etc., etc. — see text.



CSCI 4320 November 18, 2003

Slide 9

Filesystem Performance

• Access to disk data is much slower than access to memory — seek time plus

rotational delay plus transfer time.

• So, file systems include various optimizations . . .

Slide 10

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away.

– If block hasn’t been written out in a while, also could write out, to avoid

data loss in long-running program.

∗ “Write-through cache” (Windows) — always write out modified blocks

right away.

∗ Periodic “sync” to write out (Unix).

CSCI 4320 November 18, 2003

Slide 11

Improving Filesystem Performance — Block
Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)

Slide 12

Improving Filesystem Performance — Reducing Disk
Arm Motion

• Group blocks for each file together — easier if bitmap is used to keep track of

free space. If not grouped together — “disk fragmentation” may affect

performance.

• Place i-nodes so they’re fast to get to (and so maybe we can read an i-node

and associated file block together).



CSCI 4320 November 18, 2003

Slide 13

Example Filesystem — Unix V7

• Filename restriction — each part of path name at most 14 characters.

• So, directory entry is just 14-byte name and i-node number.

• I-nodes are all stored in a contiguous array at the start of the file system (right

after boot block and a “superblock” containing additional parameters).

• What’s in each i-node? attributes (permission bits, numeric owner and group

ID, timestamps, links count) and list of blocks — last is pointer to more blocks.

• To find a file:

– Start with root directory — its i-node is in a known place.

– Scan directory for first part of path, get its i-node, read it, scan for next part

of path, etc.

– Relative path names are handled by including “.” and “..” in each directory,

so no special code needed.

Slide 14

Next Time

• Journalling filesystems.

• Filesystems in real o/s’s.

CSCI 4320 November 18, 2003

Slide 15

Minute Essay

• Anything else you particularly want to know about filesystems?

• Advisory vote:

– Choice 1: Homework 6 due Tuesday, solutions available Wednesday.

– Choice 2: Homework 6 due Monday (day before exam), solutions available

Monday.


