CSCI 4320 (Principles of Operating Systems), Fall 2004

Homework 2

Assigned: October 12, 2004.
Due: October 19, 2004, at 5pm. Not accepted late.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

1 Reading

Be sure you have read chapters 1, 2 and 3.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Most Unix systems include some command that allows you to trace all system
calls made by a process or command. Under Linux, this command is strace. For example,
to trace all the system calls made during execution of the command 1s -1 and record the
output in OUT, you would type

strace -o 0OUT 1ls -1

Your mission for this problem is to run strace for a command of your choice, capture the
output, and then describe what some of it means. Specifically, I want you to pick at least
four lines of the output using different system calls and briefly explain each of these lines,
describing in general terms what the system call is supposed to do and what the parameters
and return value mean. (So, you will turn in a printout of the output of strace with your
homework. You might want to mark it up with numbers and then refer to these numbers in
your explanation.)

The man page for strace explains the general format of the output. To find out what the
individual system calls do, you will need to read their man pages. Some of these are easy
to find — e.g., the first call is usually to execve, and man execve will tell you about it.
Some are a little harder to track down — e.g., man open produces information about an open
command rather than a system call. man -k open produces a list of all man pages whose
one-line descriptions include “open”, and from this list one can perhaps guess that to look
at the desired man page you need the command man 2 open. If the system call reported by
strace ends in 64 (e.g., fstat64), the right man page can be found by removing “64” from
the name (e.g., man fstat).

CSCI 4320 Homework 2 Fall 2004

2. (5 points) Consider a computer that does not have a test-and-set-lock (TSL) instruction,
but does have an instruction to swap the contents of a register and a memory word in a single
indivisible action. Use such an instruction (call it SWAP) to write a routine enter_region like
the one found in Figure 2-22 in the textbook, or explain why this is impossible.

3. (5 points) Consider the procedure put_forks in Figure 2-33 in the textbook. Suppose that
the variable statefi/ was set to THINKING after the two calls to test rather than before.
How would this change affect the solution? (IL.e., would it work as well as before? better?
not as well?)

4. (5 points) Five batch jobs (call them A through F) arrive at a computer center at almost
the same time. Their estimated running times (in minutes) and priorities are as follows, with
5 indicating the highest priority:

job | running time | priority
A 10 3
B 6)
C 2 2
D 4 1
FE 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e.,
they do not block). (Before doing this by hand, decide whether you want to do optional
programming problem 3.)

e First-come, first-served (run them in alphabetic order by job name).

Shortest job first.

Round robin, using a time quantum of 1 minute.

Round robin, using a time quantum of 2 minutes.

Priority scheduling.

5. (5 points) Recall that some proposed solutions to the mutual-exclusion problem (e.g., Peter-
son’s algorithm) involve busy waiting. Do such solutions work if priority scheduling is being
used and one of the processes involved has higher priority than the other(s)? Why or why
not? How about if round-robin scheduling is being used? Why or why not?

6. (5 points) Suppose that a scheduling algorithm favors processes that have used the least
amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes?

7. (5 points) Suppose you are designing an electronic funds transfer system, in which there will
be many identical processes that work as follows: Each process accepts as input an amount
of money to transfer, the account to be credited, and the account to be debited. It then locks
both accounts (one at a time), transfers the money, and releases the locks when done. Many
of these processes could be running at the same time. A friend proposes a simple scheme
for locking the accounts: First lock the account to be credited; then lock the account to be
debited. Can this scheme lead to deadlock?

CSCI 4320 Homework 2 Fall 2004

If you think it cannot, briefly explain why not. If you think it can, first give an example of
a possible deadlock situation, and then design a scheme that avoids deadlocks, but in such
a way that once an account is locked, it is not released until the funds transfer is complete
(i.e., a design that relies on repeatedly locking one account, trying the other, and releasing
the first is not allowed).

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Turn in your code by sending mail to csci4320-homework@cs.trinity.edu, with each of your
code files as an attachment. If there’s any question of which file(s) correspond to which problems,
explain in the body of the mail message. Please use a subject line such as “homework 2” or “hw2”.
You can develop your programs on any system that provides the needed functionality, but I will
test them on one of the department’s Fedora Core 2 Linux machines, so you should probably make
sure they work in that environment before turning them in.

1. (Optional — up to 10 extra-credit points) Figure 1-19 in chapter 1 of the textbook presents
pseudocode for a simple command shell. Your mission for this problem is to turn this into a
C or C++ program that runs on a Linux system. Your program should prompt the user for a
command and command-line arguments (the prompt can be something simple, such as “?”)
and then run the given command with the given arguments. You can require that the user
give the full path for the command, and you do not have to do sophisticated parsing of the
command-line arguments (such as wildcard expansion, recognition of environment variables,
etc., etc.). Here is a sample execution, terminated by control-C.

[bmassing@Athenal$./simple-shell

7 1s

Unable to find command

? /bin/1ls

Makefile another simple-shell simple-shell.cpp somefile
? /bin/ls -1

total 28

“rw---——-- 1 bmassing bmassing 119 Oct 3 08:02 Makefile
“rW-————-- 1 bmassing bmassing 5 0ct 3 08:00 another
“TWX-————- 1 bmassing bmassing 22035 Oct 3 08:15 simple-shell
-rw---——-- 1 bmassing bmassing 1407 Oct 3 08:15 simple-shell.cpp
“rW-————-- 1 bmassing bmassing 5 0Oct 3 08:00 somefile

? /bin/ls junk
/bin/ls: junk: No such file or directory
?

[bmassing@Athenal$

You can add more functionality (searching a path for the command, doing more sophisticated
parsing of inputs, exiting when the user types “exit”, etc.). If you do, describe the added
functionality in comments at the top of your code. I will give 5 extra-credit points for the
basic functionality described above, and up to 5 additional points for added functionality.

Turning the pseudocode into code mostly involves defining appropriate data structures for the
variables in the pseudocode and replacing the type_prompt and read_command functions with

CSCI 4320 Homework 2 Fall 2004

appropriate real code. Your first step should probably be to read the man page for execve
to see what arguments it expects, and then figure out what you need to do to turn what the
user types in into suitable input to execve.

You will probably find that most of the code you write for this problem will be code to parse
the input (accept a line of text and break it into a command and arguments). You can do this
using C functions such as scanf, with the C++ string class, or whatever you prefer. If you
use the C functions and fixed-size character arrays, try to make the program fail gracefully if
the user supplies more input than your code has room to accept.

You may be tempted to just use the C library function system. Don’t. You won’t learn what
this problem is meant to teach you, and you won’t get credit for such a solution.

(5 points) The starting point for this problem is a simple C++/threads implementation
threads-cr.cpp! of the mutual-exclusion problem. Currently no attempt is made to ensure
that only one thread at a time is in its critical region, and if you run it you will see that
in fact it frequently happens that all the threads are in their critical region at the same
time. Your mission is to correct this. There is probably more than one way to do this, but
the easiest is to use the “mutex” library functions, which provide simple locking/unlocking.
man pthread mutex_init will tell you about these functions.

Start by compiling the program and observing its behavior with different numbers of threads.
To compile with g++, you will need the extra flag —pthread, e.g.

g++ -o threads-cr -pthread threads-cr.cpp

(Interestingly enough, the exact behavior of this program seems to depend both on the number
of processors and on the release of the operating systems — try it on one of the lab machines
and then on one of the Dwarf machines to see what I mean. You may need to recompile
recompile when switching to a machine running a different release of the operating system.
Compiling the above code on a Dwarf generates some warnings; a version of the program that
compiles there is old-threads-cr.cpp?.)

Then make your changes and confirm that the program now behaves as expected, i.e., when
one thread starts its critical region no other thread can start its critical region until the first
one finishes.

(Optional — up to 5 extra-credit points) The starting point for this problem is a program
scheduler.cpp® that simulates execution of a scheduler, i.e., generates solutions to prob-
lem 4. (This is an updated version that corrects a bug. The original version is available
as scheduler-v0.cpp?.) Currently the program simulates only the FCFS algorithm. Your
mission is to make it simulate one or more of the other algorithms mentioned in problem 4.
(Feel free to rewrite anything about this program, including starting over in a language of
your choice. Just remember that the program has to run on one of the department Linux
machines, and it needs to accept input from standard input — i.e., no GUIs, Web-based

"http://www.cs.trinity.edu/ bmassing/Classes/CS4320_2004fall/Homeworks/HWO2/Problems/threads-cr.

CPP

Zhttp://www.cs.trinity.edu/ bmassing/Classes/CS4320_2004fall/Homeworks/HWO2/Problems/
old-threads-cr.cpp
Shttp://wuw.cs.trinity.edu/ bmassing/Classes/CS4320_2004fall/Homeworks/HW02/Problems/scheduler.

cpp

‘http://www.cs.trinity.edu/ bmassing/Classes/CS4320_2004fall/Homeworks/HW02/Problems/
scheduler-v0.cpp

CSCI 4320 Homework 2 Fall 2004

programs, etc. The latter requirement is to make it easier for me to test your code, at least
partially automatically. If you make changes to the format of the input, change the comments
so they describe the changed requirements.)

