CSCI 4320 August 26, 2004

Administrivia

e Things to note in the syllabus:
— My office hours and e-mail address.
— Course Web page (especially schedule).
— Requirements and grading.

Slide 1 — Policies on late work and academic integrity.

What Is An Operating System?

o Definition by example:
— Windows, Linux, Unix, BeOs, OS X (Mac), ...
— VMS, MVS, VM/370, ...

o Definition(s) from operating systems textbooks:
Slide 2

— Something that provides “virtual machine” for application programs and
users (“top down”).

— Something that manages computer’s resources (“bottom up”).
o Definition justifying making you study them:

— Important part of computer system.




CSCI 4320

August 26, 2004

Slide 3

What The Hardware Can Do

e CPU: fetch machine instruction from memory, execute; repeat.

e Disk: read data from / write data to location on disk.

e And so forth — very primitive.

Slide 4

What The Software Must Do

e Programs students usually write in PAD I/11:

— Define and manipulate data structures.
— Do arithmetic/logical calculations.
— Read stdin / write stdout.

— Call GUl/graphics library routines.

e The magic cloud (operating system):

— Read from keyboard, write to screen.

— Manage what’s on screen — windows, taskbar, etc.

— Run multiple applications “at the same time”.
— Manage disk contents — files, directories/folders.

— Share the machine with other users.




CSCI 4320 August 26, 2004

Why Review History?

e To understand roots/development of current operating systems.

e As a way of getting many perspectives on “what do we want an o/s to do, and
how do we make it do that?”

e (To allow the instructor to relive the days of his/her youth??)

Slide 5
The Early Days (1940s)
o Programming done by making physical connections on a plugboard (!).
e Better than no computer at all, but tedious and inefficient!
Slide 6




CSCI 4320 August 26, 2004

Slide 7
The Early Days (1940s — 1950s)
e Key improvements: stored-program concept, punch cards.
o Programming done by encoding machine language into cards.
e Program included code to start up computer, read rest of program into
memory, do all input and output, etc. (no operating system).
Slide 8

One program at a time, machine operated by programmer.

Better, but still tedious and inefficient!




CSCI 4320 August 26, 2004

The Early Days (1950s)

e Key improvements: assemblers and compilers, libraries of commonly-used

code, specialists to run machine (operators).

e Programming done in assembly language (or early high-level language),

punched into cards.

Slide 9 e Separate steps to translate to machine language, execute.
e One program at a time, but machine operated by specialist.
® Less tedious, less inefficient.

e Still cumbersome for programmers, CPU idle between steps.

Batch Systems (1950s)

e Key improvement: “batch” idea — automate transitions between steps
(translate program, execute, translate next program, etc.).

o How to make this work? separate input by “control cards”, write primitive
operating system to interpret them, manage transitions.

Slide 10 e Less inefficient, but I/O devices slow, so CPU idle a lot — still one program at

a time.

e Still cumbersome for programmers — punch program into cards, give to
operator, wait for output.




CSCI 4320 August 26, 2004

4 Multiprogramming Systems (1960s — ? ) )

e Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

o How to make this work? requires much more complex operating system —
must share memory and I/O devices among programs, switch between them,

Slide 11 etc.

e Efficient use of hardware.

o Still cumbersome for programmers — no real changes here.

IBM 360

Slide 12




CSCI 4320 August 26, 2004

Timesharing Systems (1960s — ?)

e Key improvements: “interactive” users (using text terminals), utility programs

to support them (shells, text editors, etc.).

How to make this work? like multiprogramming, but now programs sharing
memory are interactive users wanting fast response.

Slide 13 e Efficient use of hardware.

e Much less cumbersome for program development!

Personal Computers (1980s — ?)
e Similar evolution of operating systems — initially very simple, gradually
becoming more complex/capable.

e Features from mainframes adopted as hardware permitted.

o A key difference — emphasis on user convenience rather than efficient use of
Slide 14

hardware.




CSCI 4320

August 26, 2004

Slide 15

Operating System Functions

e |Implement useful abstractions:
— Processes.

— Filesystems.

o Manage resources for multiple users/applications:
- CPU.
— Memory.

— 1/O devices.

All this takes a lot of code! millions of lines, for current operating systems.

Slide 16

o What are your goals for this course?
e What operating systems have you used/installed/experienced?

e Anything else you want to tell me? about the course, what you did this
summer, ... ?




