
CSCI 4320 August 26, 2004

Slide 1

Administrivia

• Things to note in the syllabus:

– My office hours and e-mail address.

– Course Web page (especially schedule).

– Requirements and grading.

– Policies on late work and academic integrity.

Slide 2

What Is An Operating System?

• Definition by example:

– Windows, Linux, Unix, BeOs, OS X (Mac), . . .

– VMS, MVS, VM/370, . . .

• Definition(s) from operating systems textbooks:

– Something that provides “virtual machine” for application programs and

users (“top down”).

– Something that manages computer’s resources (“bottom up”).

• Definition justifying making you study them:

– Important part of computer system.



CSCI 4320 August 26, 2004

Slide 3

What The Hardware Can Do

• CPU: fetch machine instruction from memory, execute; repeat.

• Disk: read data from / write data to location on disk.

• And so forth — very primitive.

Slide 4

What The Software Must Do

• Programs students usually write in PAD I/II:

– Define and manipulate data structures.

– Do arithmetic/logical calculations.

– Read stdin / write stdout.

– Call GUI/graphics library routines.

• The magic cloud (operating system):

– Read from keyboard, write to screen.

– Manage what’s on screen — windows, taskbar, etc.

– Run multiple applications “at the same time”.

– Manage disk contents — files, directories/folders.

– Share the machine with other users.



CSCI 4320 August 26, 2004

Slide 5

Why Review History?

• To understand roots/development of current operating systems.

• As a way of getting many perspectives on “what do we want an o/s to do, and

how do we make it do that?”

• (To allow the instructor to relive the days of his/her youth??)

Slide 6

The Early Days (1940s)

• Programming done by making physical connections on a plugboard (!).

• Better than no computer at all, but tedious and inefficient!



CSCI 4320 August 26, 2004

Slide 7

ENIAC

Slide 8

The Early Days (1940s – 1950s)

• Key improvements: stored-program concept, punch cards.

• Programming done by encoding machine language into cards.

• Program included code to start up computer, read rest of program into

memory, do all input and output, etc. (no operating system).

• One program at a time, machine operated by programmer.

• Better, but still tedious and inefficient!



CSCI 4320 August 26, 2004

Slide 9

The Early Days (1950s)

• Key improvements: assemblers and compilers, libraries of commonly-used

code, specialists to run machine (operators).

• Programming done in assembly language (or early high-level language),

punched into cards.

• Separate steps to translate to machine language, execute.

• One program at a time, but machine operated by specialist.

• Less tedious, less inefficient.

• Still cumbersome for programmers, CPU idle between steps.

Slide 10

Batch Systems (1950s)

• Key improvement: “batch” idea — automate transitions between steps

(translate program, execute, translate next program, etc.).

• How to make this work? separate input by “control cards”, write primitive

operating system to interpret them, manage transitions.

• Less inefficient, but I/O devices slow, so CPU idle a lot — still one program at

a time.

• Still cumbersome for programmers — punch program into cards, give to

operator, wait for output.



CSCI 4320 August 26, 2004

Slide 11

Multiprogramming Systems (1960s – ? )

• Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

• How to make this work? requires much more complex operating system —

must share memory and I/O devices among programs, switch between them,

etc.

• Efficient use of hardware.

• Still cumbersome for programmers — no real changes here.

Slide 12

IBM 360



CSCI 4320 August 26, 2004

Slide 13

Timesharing Systems (1960s – ?)

• Key improvements: “interactive” users (using text terminals), utility programs

to support them (shells, text editors, etc.).

• How to make this work? like multiprogramming, but now programs sharing

memory are interactive users wanting fast response.

• Efficient use of hardware.

• Much less cumbersome for program development!

Slide 14

Personal Computers (1980s – ?)

• Similar evolution of operating systems — initially very simple, gradually

becoming more complex/capable.

• Features from mainframes adopted as hardware permitted.

• A key difference — emphasis on user convenience rather than efficient use of

hardware.



CSCI 4320 August 26, 2004

Slide 15

Operating System Functions

• Implement useful abstractions:

– Processes.

– Filesystems.

• Manage resources for multiple users/applications:

– CPU.

– Memory.

– I/O devices.

All this takes a lot of code! millions of lines, for current operating systems.

Slide 16

Minute Essay

• What are your goals for this course?

• What operating systems have you used/installed/experienced?

• Anything else you want to tell me? about the course, what you did this

summer, . . . ?


