
CSCI 4320 September 7, 2004

Slide 1

Administrivia

• No class Thursday — I plan to be at a conference.

• Homework 1 (covering chapter 1) on Web, linked from the “Lecture topics and

assignments” page. Due date September 16.

Slide 2

Minute Essay From Last Lecture

• Question: I once had a learning experience about “how DOS is different from

a real o/s”. Summary version: A program using pointers (possibly

uninitialized) caused the whole machine to lock up and need to be

power-cycled. What do you think went wrong?

• Answer: The program changed memory at the addresses pointed to by the

uninitialized pointers — and this memory was being used by the o/s, possibly

to store something related to interrupt handling. A “real” o/s wouldn’t allow

this!



CSCI 4320 September 7, 2004

Slide 3

Hardware Overview, Recap

• Simplified view of basic hardware components (processor, memory, I/O

devices) — their purpose from a user’s perspective, how they work from an

assembly-language programmer’s perspective.

• Interaction between hardware design and o/s design — what the hardware

can do influences o/s design, but what o/s designers want also influence

hardware design.

Slide 4

Operating System Services, Again

• Process management.

• Memory management.

• I/O subsystem.

• File systems.

• Security.

• Shell.



CSCI 4320 September 7, 2004

Slide 5

Process Management

• “Process” abstraction to represent one of a collection of “things happening at

the same time”.

A working definition — “program in execution” (program code plus associated

variables, sequence of states tracking progress through code and changes in

variables).

• “Concurrent” execution via interleaving of actions.

In effect, each process has a “virtual CPU”, with the actual CPU repeatedly

suspending one process to work on another (“context switch”).

• O/s must provide a way to manage this, including ways to create processes,

allow/force them to terminate, communicate among them (e.g., to

coordinate/synchronize).

Slide 6

Memory Management

• Managing physical memory:

– How to divide it up among processes/programs/users — each has an

“address space” of memory it can access.

– How to protect each process’s memory from other processes (requires h/w

support, but managed by o/s).

• Managing address spaces (virtual memory):

– Originally, address space limited by size of physical memory.

– “Virtual memory” allows bigger address spaces, by shuffling data between

disk and physical memory.



CSCI 4320 September 7, 2004

Slide 7

I/O Subsystem

• Encapsulates messy low-level details.

• Allows sharing of I/O devices among programs/users.

Slide 8

File Systems

• “File system” abstraction, including:

– “File” abstraction — collection of related information, possibly with

associated ownership, permissions, timestamps, etc.

– “Directory” abstraction.

– “Path names” — absolute and relative.

– “Opening a file” — connecting program to file (check permissions, etc.,

return “file descriptor”).

• Additional Unix ideas/terms:

– Mounting filesystems.

– Special files — idea is to treat other devices (e.g., printers) like files.

– Pipes — connections between processes that can be treated like file.



CSCI 4320 September 7, 2004

Slide 9

Security

• Protect users/applications from each other.

• Protect users/applications from the outside world.

Slide 10

Shell

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of o/s, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com; Unix sh, bash, csh, tcsh,

ksh, zsh, . . .



CSCI 4320 September 7, 2004

Slide 11

System Calls

• Recall — some things can/should only be done by o/s (e.g., I/O), but

application programs need to be able to request them.

• How to make this work — “system call” (good discussion on pp. 45–46):

– Library routine (running in user mode) sets up parameters and issues

TRAP instruction or similar — causing an interrupt.

– Interrupt handler (running in supervisor mode) processes system call

using parameters set up by library routine.

– Control returns to library routine in user mode.

• Typical services provided — creating processes, creating files and directories,

etc., etc. — see tables in textbook (Unix on p. 47, Windows on p. 55).

Slide 12

Operating System Structures

• Clearly o/s could involve a whole lot of code — how to structure?

• Some choices:

– Monolithic systems.

– Layered systems.

– Virtual machines.

– Exokernels.

– Client-server model.



CSCI 4320 September 7, 2004

Slide 13

Monolithic Systems

• Tanenbaum’s description — “The Big Mess”.

• Examples include MS-DOS, early Unix.

• Advantages? “works, sort of” — often justification is historical.

• Disadvantages? “big mess”. (Not everyone agrees, though.)

Slide 14

Layered Systems

• Idea — use layers of abstraction, just as one structures application programs.

• Examples include THE, MULTICS, OS/2, Windows NT (more so in early

releases).

• Advantages? — nice separation of concerns, modularity.

• Disadvantages? — tricky to plan layers, performance can be slow.



CSCI 4320 September 7, 2004

Slide 15

Virtual Machines

• Idea — o/s provides a simulation of the actual physical machine, this “virtual

machine” then runs another o/s – or several of them.

• Examples include VM/370, Windows support for old MS-DOS programs,

VMware, Mac-on-Linux, Java Virtual Machine.

• Advantages? — separates multiprogramming from other concerns, emulation

aspect can be useful, useful in o/s development.

• Disadvantages? — another layer, so can be slower.

Slide 16

VM/370

• Idea — provide multiple “virtual machines”, each running its own o/s, which

could be:

– “Real” o/s such as MVS (another mainframe o/s) — in turn running many

processes.

– Not-quite-real o/s CMS — interactive single-user system rather like

MS-DOS, runs under VM/370 only (not on real hardware).

• Allows sharing of physical resources among multiple “client” o/s’s:

– CPU sharing — similar to multitasking.

– I/O device sharing — share physical devices, or allow exclusive use.



CSCI 4320 September 7, 2004

Slide 17

VM/370, Continued

• How does this work? briefly:

– Client o/s’s run native code, request o/s services in the usual way

(interrupt or system call).

– Interrupt handler is part of VM/370 — so it processes I/O

requests/interrupts, errors, etc.

– Client o/s system code runs in simulated supervisor mode (really user

mode).

• Successors to VM/370 (VM/ESA, z/VM) currently being used to run many

copies of Linux on a mainframe (!).

Slide 18

Minute Essay

• This wraps up lectures on chapter 1; is there anything that was particularly

unclear or you want to know more about?


