
CSCI 4320 September 14, 2004

Slide 1

Administrivia

• Reminder: Homework 1 due Thursday at 5pm. Bring to class, or okay to drop

off in my mailbox later in the day.

Slide 2

Minute Essay From Last Lecture

• “Anything unclear from chapter 1?”

Most things that seemed unclear will get clearer in subsequent chapters.



CSCI 4320 September 14, 2004

Slide 3

Process Abstraction, Review

• We want o/s to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one CPU. We can

get apparent concurrency via interleaving (as discussed last time) — model

one virtual CPU per process and have the real CPU switch back and forth

among them.

• Switching from one process to another — “context switch”: Goal is to suspend

work on a process such that we can later pick up where we left off — so we

have to save CPU state (program counter, registers, etc.) for the current

process and replace it with previously-saved state for the next process.

Slide 4

Process Abstraction, Continued

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use.



CSCI 4320 September 14, 2004

Slide 5

Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.

Slide 6

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by the CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because another process is currently

running on the CPU.

• Possible transitions? Which ones require decision-making?



CSCI 4320 September 14, 2004

Slide 7

Process States, Continued

• Possible transitions:

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.

Slide 8

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — a list of open files, e.g.

• Then you’d collect these into a table or something — “process control table”,

and individual data structures are “entries in the process control table” or

“process control blocks”.



CSCI 4320 September 14, 2004

Slide 9

Interrupt Handling, Revisited, Part 1

• When an interrupt occurs, the hardware:

– Saves a little about the current process (program counter at least) in an

agreed-upon location, e.g., on stack.

– Transfers control to fixed location — could be always the same location, or

one of several depending on the type of interrupt.

Slide 10

Interrupt Handling, Revisited, Part 2

• Code at fixed location is an “interrupt handler”, which:

– Saves enough of the CPU’s current state to enable later restart, usually in

current process’s process control block.

– “Handles” the interrupt, but minimally — saves data that could be lost (e.g.,

in device’s input buffer), marks blocked processes ready if appropriate.

– Invokes scheduler to decide which process to run next.

– Restores saved CPU state for this next process (from its process control

block), causing it to resume execution.

Other interrupts may be “disabled” during this processing.



CSCI 4320 September 14, 2004

Slide 11

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.

Slide 12

Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Advantages? threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages? sharing data has its hazards (more about this later).

• Implementation involves data structures similar to process table.



CSCI 4320 September 14, 2004

Slide 13

Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” (next two

slides).

• Various hybrid schemes also possible.

Slide 14

Implementing Threads “In User Space”

• Basic idea — operating system thinks it’s managing single-threaded

processes, all the work of managing multiple threads happens via library calls

within each process.

• Advantages? fewer system calls, hence probably more efficient.

• Disadvantages?

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible.

– Using multiple CPUs is difficult/impossible.



CSCI 4320 September 14, 2004

Slide 15

Implementing Threads “In Kernel Space”

• Basic idea — operating system is involved in managing threads, the work of

managing multiple threads happens via system calls (rather than user-level

library calls).

• Advantages? avoids the difficulties of implementing in user space (previous

slide).

• Disadvantages? probably less efficient.

Slide 16

Example Implementations

• Unix systems vary as to which they use (see chapter 10 for more info). Until

recently Linux did kernel-space threading, but allegedly with some tweaks to

make it more efficient. There have been some changes in the latest version

. . .

• Windows NT/2000 apparently is such that all processes have at least one

thread, and the basic scheme is either kernel-space or a hybrid (see

chapter 11 for more info).



CSCI 4320 September 14, 2004

Slide 17

Minute Essay

• In a system with 8 CPUs and 100 processes, what’s the maximum number of

processes that can be running? ready? blocked?

• Is there anything today that was totally unclear?


