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Administrivia

• Reminder: Homework 1 due Thursday at 5pm. Bring to class, or okay to drop

off in my mailbox later in the day.
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Minute Essay From Last Lecture

• “Anything unclear from chapter 1?”

Most things that seemed unclear will get clearer in subsequent chapters.
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Process Abstraction, Review

• We want o/s to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one CPU. We can

get apparent concurrency via interleaving (as discussed last time) — model

one virtual CPU per process and have the real CPU switch back and forth

among them.

• Switching from one process to another — “context switch”: Goal is to suspend

work on a process such that we can later pick up where we left off — so we

have to save CPU state (program counter, registers, etc.) for the current

process and replace it with previously-saved state for the next process.
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Process Abstraction, Continued

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use.
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Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.
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Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by the CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because another process is currently

running on the CPU.

• Possible transitions? Which ones require decision-making?
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Process States, Continued

• Possible transitions:

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.
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Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — a list of open files, e.g.

• Then you’d collect these into a table or something — “process control table”,

and individual data structures are “entries in the process control table” or

“process control blocks”.
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Interrupt Handling, Revisited, Part 1

• When an interrupt occurs, the hardware:

– Saves a little about the current process (program counter at least) in an

agreed-upon location, e.g., on stack.

– Transfers control to fixed location — could be always the same location, or

one of several depending on the type of interrupt.
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Interrupt Handling, Revisited, Part 2

• Code at fixed location is an “interrupt handler”, which:

– Saves enough of the CPU’s current state to enable later restart, usually in

current process’s process control block.

– “Handles” the interrupt, but minimally — saves data that could be lost (e.g.,

in device’s input buffer), marks blocked processes ready if appropriate.

– Invokes scheduler to decide which process to run next.

– Restores saved CPU state for this next process (from its process control

block), causing it to resume execution.

Other interrupts may be “disabled” during this processing.
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Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.
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Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Advantages? threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages? sharing data has its hazards (more about this later).

• Implementation involves data structures similar to process table.
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Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” (next two

slides).

• Various hybrid schemes also possible.
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Implementing Threads “In User Space”

• Basic idea — operating system thinks it’s managing single-threaded

processes, all the work of managing multiple threads happens via library calls

within each process.

• Advantages? fewer system calls, hence probably more efficient.

• Disadvantages?

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible.

– Using multiple CPUs is difficult/impossible.
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Implementing Threads “In Kernel Space”

• Basic idea — operating system is involved in managing threads, the work of

managing multiple threads happens via system calls (rather than user-level

library calls).

• Advantages? avoids the difficulties of implementing in user space (previous

slide).

• Disadvantages? probably less efficient.
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Example Implementations

• Unix systems vary as to which they use (see chapter 10 for more info). Until

recently Linux did kernel-space threading, but allegedly with some tweaks to

make it more efficient. There have been some changes in the latest version

. . .

• Windows NT/2000 apparently is such that all processes have at least one

thread, and the basic scheme is either kernel-space or a hybrid (see

chapter 11 for more info).
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Minute Essay

• In a system with 8 CPUs and 100 processes, what’s the maximum number of

processes that can be running? ready? blocked?

• Is there anything today that was totally unclear?


