CSCT 4320 September 16, 2004

Administrivia

o Remember that Homework 1 is due by 5pm today.

Slide 1
Minute Essay From Last Lecture
e Question: In a system with 8 CPUs and 100 processes, what’s the maximum
number of processes that can be running? ready? blocked?
e Answer?
Slide 2

CSCT 4320 September 16, 2004

Recap — Processes

Process abstraction — “program running on virtual CPU” (virtual program

counter, virtual registers, etc.).

e Apparent concurrency (in almost all respects identical to real concurrency)
provided by interleaving / context switches.

Slide 3

e Context switch — switch between virtual CPUs, triggered by interrupts (I/0,
error, system call, timer).

® Process can also be a way of grouping together other resources needed by a
running program, e.g., “address space”, list of open files.
These resources may form part of the “context” that must be saved / restored
on a context switch.

Recap — Process States

e Three basic states for processes — running, ready, blocked.

® Some transitions are obvious, others require decision-making (ready to
running); for now, assume existence of “scheduler” to make decisions.

Slide 4

CSCT 4320 September 16, 2004

Recap — Threads

® Processes versus threads:
— Process implements “program on virtual CPU” abstraction, has its own
group of resources.

— Thread implements “program on virtual CPU” abstraction, shares group of

Slide 5 resources with (some) other threads.

Threads are in a way “processes within processes”.

Compare context switching between processes with context switching

between threads within process.

Two basic approaches to implementing threads — “in user space” and “in

kernel space”.

Interprocess Communication

e Processes almost always need to interact with other processes:

— “Ordering constraints” — e.g., process B uses as input some data produced

by process A.

— Use of shared resources — files, shared memory locations, etc.

Slide 6 e Use of shared resources can lead to “race conditions” — output depends on

details of interleaving.

e Processes must communicate to avoid race conditions and otherwise

synchronize.

CSCT 4320 September 16, 2004

Mutual Exclusion Problem

e In many situations, we want only one process at a time to have access to
some shared resource.

e Generic/abstract version — multiple processes, each with a “critical region”
(“critical section”):
while (true) {
do_cr(); // must be "finite"

do_non_cr () ; // need not be "finite"

Slide 7

}
e Goal is to add something to this code such that:
1. No more than one process at a time can be “in its critical region”.
. No process not in its critical region can block another process.

2
3. No process waits forever to enter its critical region.
4

. No assumptions are made about how many CPUs, their speeds.

Mutual Exclusion Problem, Continued

e We'll look at various solutions (some correct, some not):

— Using only hardware features always present (some notion of shared
variable).

— Using optional hardware features.
Slide 8 — Using “synchronization primitives” (abstractions that help solve this and
other problems).
e Recall that a correct solution
— Must work for more than 1 CPU.

— Must work even in the face of unpredictable context switches — whatever
we’re doing, another process can pull the rug out from under us between
“atomic operations” (machine instructions).

. J

CSCT 4320 September 16, 2004

Sidebar: Atomic Operations

e “Atomic” operation — indivisible, executes without interference from other
processes.

o Which of the following are atomic?

-x = 1;
Slide 9 —x =x + 1;
- ++x;
- 1if (x = 0) x = 1;
Proposed Solution — Disable Interrupts
e Pseudocode for each process:
while (true) {
disable_interrupts();
do_cr();
enable_interrupts();
Slide 10

do_non_cr () ;

}

e Does it work? reviewing the criteria ...

CSCI 4320

Slide 11

Slide 12

September 16, 2004

Proposed Solution — Simple Lock Variable

e Shared variables:
int lock = 0;
Pseudocode for each process:

while (true) {

while (lock != 0);
lock = 1;

do_cr();

lock = 0;

do_non_cr () ;

}

e Does it work? reviewing the criteria ...

_

Proposed Solution — Strict Alternation

e Shared variables:

int turn = 0;
Pseudocode for process p0: Pseudocode for process p1:
while (true) { while (true) {
while (turn != 0); while (turn != 1)
do_cr(); do_cr();
turn = 1; turn = 0;
do_non_cr () ; do_non_cr () ;

} }
e Does it work? reviewing the criteria ...

’

CSCI 4320

September 16, 2004

Slide 13

Proposed Solution — Peterson’s Algorithm

e Shared variables:

int turn = 0; //
bool interested(=

Pseudocode for process p0:

while (true) {
interested0 = true;
turn = 0;
while ((turn == 0)
&& interestedl);
do_cr();
interestedO false;

do_non_cr () ;

"who tried most recently"

false,

interestedl = false;

Pseudocode for process p1:

while (true) {
interestedl = true;
turn = 1;
while ((turn == 1)
&& interested0) ;
do_cr();
interestedl = false;

do_non_cr () ;

} }
e Does it work? reviewing the criteria . ..

Slide 14

Proposed Solution — TSL Instruction

e A key problem in concurrent algorithms is the idea of “atomicity” (operations
guaranteed to execute without interference from another CPU/process).
Hardware can provide some help with this.

e E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies LockVar to registerX and (2) sets LockVar to non-zero,
all as one atomic operation.

How to make this work is the hardware designers’ problem!

CSCT 4320 September 16, 2004

Proposed Solution — TSL Instruction, Continued

o Shared variables:

int lock = 0;

Pseudocode for each process: Assembly-language routines:
while (true) { enter_cr:

Slide 15 enter_cr(); TSL regX, lock
do_cr(); compare regX with 0
leave_cr(); if not equal
do_non_cr () ; jump to enter_cr

} return

leave_cr:
store 0 in lock
return

e Does it work? reviewing the criteria ...

Mutual Exclusion Solutions So Far

e Solutions so far have some problems: inefficient, dependent on whether
scheduler/etc. guarantees fairness.

e Also, they’re very low-level, so might be hard to use for more complicated
problems.

Slide 16 ® S0, people have proposed various “synchronization mechanisms” . ..

CSCT 4320 September 16, 2004

e Do you see why the various solutions to the mutual exclusion problem so far

work / don’t work?

e Give an example (other than those discussed) of a situation in which you think
a solution to this problem would be needed.

Slide 17

