
CSCI 4320 September 28, 2004

Slide 1

Administrivia

• (I guess there’s not any!)

Slide 2

Minute Essay From Last Lecture

• Alleged joke (from some random Usenet person):

A man’s P should exceed his V else what’s a sema for?

Do you understand this?

(P is down, V is up — if not more P’s than V’s, no point in having a

semaphore?)

• Anything else unclear?



CSCI 4320 September 28, 2004

Slide 3

Semaphores — Recap

• Idea — define ADT that will be easier to use for interprocess

communication/synchronization, maybe we can implement without (as much)

busy-waiting.

• Definition as ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• How does this relate to operating systems?

– Process abstraction (and its use within the o/s) means we have to solve

“synchronization problems”.

– Solution should somehow be part of o/s.

Slide 4

Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.



CSCI 4320 September 28, 2004

Slide 5

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .

Slide 6

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr() mostly like before; see p. 113.



CSCI 4320 September 28, 2004

Slide 7

Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run (e.g., whole procedure is a

critical region).

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”).

Slide 8

Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}



CSCI 4320 September 28, 2004

Slide 9

Bounded-Buffer Monitor

• Data:

buffer B(N); // N is a constant, buffer initially empty

int count = 0;

condition full;

condition empty;

insert(item itm) {

while (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

while (count == 0)

wait(empty);

itm = get(B);

signal(full);

}

Slide 10

Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors:

– Data for monitor is instance variables (data for class).

– Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

– wait, notify, notifyAll methods.

– No condition variables, but above methods provide more or less equivalent

functionality.



CSCI 4320 September 28, 2004

Slide 11

Message Passing

• Previous synchronization mechanisms all involve shared variables, okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.

Slide 12

Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.



CSCI 4320 September 28, 2004

Slide 13

Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.

(Why would you want to do this? programming model is in some ways

simpler, doesn’t require memory shared among processes.)

• Examples next time . . .

Slide 14

Minute Essay

• Tell me one thing you’ve learned from the textbook.


