
CSCI 4320 October 7, 2004

Slide 1

Administrivia

• Exam 1 was scheduled for October 12. Okay to move? More info by e-mail, if

all agree to postpone.

• Lecture notes online. (If I forget to post them, please feel free to remind me!)

Slide 2

Dining Philosophers, Continued

• Solution from last time — okay? (Not quite, but very close.)

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

state[right(i) != eating) &&

state[i] == hungry) {

state[i] = eating;

up(self[i]);

}

}



CSCI 4320 October 7, 2004

Slide 3

Dining Philosophers, Improved Version

• Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between

neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,

and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

Slide 4

Review — Processes and Context Switches

• Recall idea behind process abstraction — make every activity we want to

manage a “process”, and run them “concurrently”.

(Try ps -A f on a Linux system.)

• Each process has a “virtual CPU” (registers, program counter, etc.) and is

running some program.

(“Heavyweight processes” have other resources too — address space, files,

etc. “Lightweight processes” (threads) share.)

Sometimes program must wait — for I/O, because of synchronization

mechanism, etc.

• Apparent concurrency provided by interleaving.



CSCI 4320 October 7, 2004

Slide 5

Review — Processes and Context Switches

• To make this work — process table, ready/running/blocked states, context

switches.

• Context switches triggered by interrupts — I/O, timer, system call, etc.

• On interrupts, interrupt handler processes interrupt, and then goes back to

some process — but which one?

Slide 6

Which Process To Run Next?

• Deciding what process to run next — scheduler/dispatcher, using “scheduling

algorithm”.

• When to make scheduling decisions?

– When a new process is created.

– When a running process exits.

– When a process becomes blocked (I/O, semaphore, etc.).

– After an interrupt.

• One possible decision — “go back to interrupted process” (e.g., after I/O

interrupt).



CSCI 4320 October 7, 2004

Slide 7

Scheduler Goals

• Importance of scheduler can vary; extremes are

– Single-user system — often only one runnable process, complicated

decision-making may not be necessary (though still might sometimes be a

good idea).

– Mainframe system — many runnable processes, queue of “batch” jobs

waiting, “who’s next?” an important question.

– Servers / workstations somewhere in the middle.

• First step is to be clear on goals — want to make “good decisions”, but what

does that mean? Typical goals for any system:

– Fairness — similar processes get similar service.

– Policy enforcement — “important” processes get better service.

– Balance — all parts of system (CPU, I/O devices) kept busy (assuming

there is work for them).

Slide 8

Aside — Terminology

• Discussion often in term of “jobs” — holdover from mainframe days, means

“schedulable piece of work”.

• Processes usually alternate between “CPU bursts” and I/O, can be

categorized as “compute-bound” (“CPU-bound”) or “I/O bound”.

• Scheduling can be “preemptive” or “non-preemptive”.



CSCI 4320 October 7, 2004

Slide 9

Scheduler Goals By System Type

• For batch (non-interactive) systems, possible goals (might conflict):

– Maximize throughput — jobs per hour.

– Minimize turnaround time.

– Maximize CPU utilization.

Preemptive scheduling may not be needed.

• For interactive systems, possible goals:

– Minimize response time.

– Make response time proportional (to user’s perception of task difficulty).

Preemptive scheduling probably needed.

• For real-time systems, possible goals:

– Meet time constraints/deadlines.

– Behave predictably.

Slide 10

First Come, First Served (FCFS)

• Basic ideas:

– Keep a (FIFO) queue of ready processes.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process exits or blocks. (I.e., no preemption.)

– Next process is the one at the head of the queue.

• Points to consider:

– How difficult is this to understand, implement?

– What happens if a process is CPU-bound?

– Would this work for an interactive system?



CSCI 4320 October 7, 2004

Slide 11

Shortest Job First (SJF)

• Basic ideas:

– Assume work is in the form of “jobs” with known running time, no blocking.

– Keep a queue of these jobs.

– When a process (job) starts, add it to the queue.

– Switch when the running process exits. (I.e., no preemption.)

– Next process is the one with the shortest running time.

• Points to consider:

– How difficult is this to understand, implement?

– What if we don’t know running time in advance?

– What if all jobs are not known at the start?

– Would this work for an interactive system?

– What’s the key advantage of this algorithm?

Slide 12

Round-Robin Scheduling

• Basic ideas:

– Keep a queue of ready processes, as before.

– Define a “time slice” — maximum time a process can run at a time.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process uses up its time slice, or it exits or

blocks. (I.e., preemption allowed!)

– Next process is the one at the head of the queue.

• Points to consider:

– How difficult is this to understand, implement?

– Would this work for an interactive system?

– How do you choose the time slice?



CSCI 4320 October 7, 2004

Slide 13

Priority Scheduling

• Basic ideas:

– Keep a queue of ready processes, as before.

– Assign a priority to each process.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process exits or blocks, or possibly when a

process starts. (I.e., preemption may be allowed.)

– Next process is the one with the highest priority.

• Points to consider:

– What happens to low-priority processes? (So, maybe we should change

priorities sometimes?)

– How do we decide priorities? (external considerations versus internal

characteristics)

Slide 14

Shortest Remaining Time Next

• Basic idea — variant on SJF:

– Assume that for each process (job), we know how much longer it will take.

– Keep a queue of ready processes, as before; add to it as before.

– Switch when the running process exits or a new process starts. (I.e.,

preemption allowed — requires recomputing time left for preempted

process.)

– Next process is the one with the shortest time left.

• Points to consider:

– How does this compare with SJF?



CSCI 4320 October 7, 2004

Slide 15

Three-Level Scheduling

• Basic idea — break up problem of scheduling (batch) work into three parts:

– Admissions scheduling — choose from input queue which jobs to “let into

the system” (create processes for).

– Memory scheduling — choose from among processes in system which to

keep in memory, which to “swap out” to disk.

– CPU scheduling — choose from among processes in memory which to

actually run.

• Points to consider:

– Are there advantages to limiting how many processes, how many in

memory? What criteria could we use?

– Are there advantages to the explicit three-level scheme?

– Would this (or a variant) work for interactive systems?

– Do all three schedulers have to be efficient?

Slide 16

Minute Essay

• Suppose you have a batch system with the following jobs.

job ID running time arrival time

A 10 0

B 6 0

C 20 10

D 6 10

Compute turnaround times for all jobs using first FCFS and then SJF.


