
CSCI 4320 October 19, 2004

Slide 1

Administrivia

• Exam 1 Thursday.

• Homework 2 due today by 5pm.

Code to be e-mailed to me at

csci4320-homework@cs.trinity.edu. (Deadline 11:59pm

today.)

Sample solution will be available tomorrow in hardcopy outside my office; also

graded Homework 1 (and maybe Homework 2?).

• No formal review session — we’ll use some of class time today, or please feel

free to come by during office hours.

Slide 2

Memory Management, Introduction

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.



CSCI 4320 October 19, 2004

Slide 3

Monoprogramming

• Idea — only one user program/process at a time, no swapping or paging.

Only decision to make is how much memory to devote to o/s itself, where to

put it.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in very early mainframes, MS-DOS; still used in some embedded

systems.

Slide 4

Multiprogramming With Fixed Partitions

• Idea — partition memory into fixed-size “partitions” (maybe different sizes),

one for each process.

• Limits “degree of multiprogramming” (how many processes can run

concurrently).

• Probably necessitates admissions scheduling — either one input queue per

partition, or one combined queue.

If one combined queue, how to choose from it when a partition becomes

available? first job that fits? largest job that fits? etc.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.



CSCI 4320 October 19, 2004

Slide 5

Multiprogramming With Variable Partitions

• Idea — separate memory into partitions as before, but allow them to vary in

size and number.

I.e., “contiguous allocation” scheme.

(We’ll consider swapping separately, unlike textbook.)

• Like previous scheme, necessitates admissions scheduling.

• Requires that we keep track of locations and sizes of processes’ partitions,

free space. Notice potential for memory fragmentation.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 6

Multiprogramming With Variable Partitions — Bitmaps

• One solution to problem of keeping track of locations/sizes of processes’

memory and free-space “chunks”.

• Idea — divide memory into “allocation units”; for each, one bit says whether

it’s free.

• Tradeoffs — simple? easy/quick to find free space of size N?

• How big should allocation units be?



CSCI 4320 October 19, 2004

Slide 7

Multiprogramming With Variable Partitions — Free List

• Another solution to problem of keeping track of locations/sizes of processes’

memory and free-space “chunks”.

• Idea — keep linked list with one entry for each process or free-space chunk

(“hole”), sorted by address. When we allocate/free memory, possibly

split/merge entries.

• Tradeoffs — simple? space requirements compared to bitmap?

Slide 8

Multiprogramming With Variable Partitions, Continued

• Another implementation issue — how to decide, when starting a process,

which of the available free chunks to assign.

• Several strategies possible:

– First fit.

– Next fit.

– Best fit.

– Worst fit.

– Quick fit.



CSCI 4320 October 19, 2004

Slide 9

Multiprogramming with Fixed/Variable Partitions —
Recap

• Comparing the two schemes:

– Similar admission scheduling issues.

– Complexity versus flexibility, memory use also roughly similar.

• Either could be adequate for a simple batch system (maybe with the addition

of swapping — next lecture).

Slide 10

Relocation and Protection, Review

• The “relocation problem” — as part of compiling/linking, must turn

symbolic/implicit references (e.g., to other parts of the program) into memory

addresses.

One simple way — absolute addresses.

Another simple way — loader program to modify addresses as program is

loaded into memory.

• Memory protection — want to protect the memory of one process from

inadvertent or malicious access by other processes.

A simple way — divide memory into blocks, associate a key with each block,

only allow access to process with matching key (or “key 0” – o/s).

• A way to solve both problems — “dynamic address translation” via MMU.



CSCI 4320 October 19, 2004

Slide 11

Dynamic Address Translation

• Underlying idea — separate program addresses (relative to start of program’s

“address space”) from physical addresses (memory locations), and map

program addresses to physical addresses. Also try to identify out-of-bounds

addresses.

• Simplest such map based on base and limit addresses (B and L):

Program address p maps to memory location B + p.

If B + p > L, invalid (out of bounds).

If B and L are different for each process — solves both problems.

• Only practical way to implement — hardware “memory management unit” that

logically sits between the CPU and memory.

Simplifying, CPU references program addresses, MMU turns them into

physical addresses, generates interrupt if invalid.

MMU uses, e.g., base and limit registers that change during a context switch.

Slide 12

Exam Review

• One student asked last time “what’s the best way to study?” Review textbook /

notes (notes will give you an idea of what I’d be likely to ask about); review

homework. End-of-chapter summaries can also be helpful.

• There will probably be some multiple-choice / true-false, some short-answer,

some “problems” (involving pseudocode, scheduling algorithms, etc.).



CSCI 4320 October 19, 2004

Slide 13

Minute Essay

• None — sign in.


