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Administrivia

• None.
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Recap — Paging

• Recall basic ideas of paging:

– Divide address spaces into pages, memory into page frames; allocate

memory page (frame) by page (frame).

– Use page tables (one per process) to keep track of things.

– Use MMU to translate program (virtual) addresses into memory locations

— using page table for current process. Generate “page fault” interrupt if

impossible.

Notice that we get memory protection for free; can also get memory

sharing. Related issue — might be nice to have “read-only” bit in page

table.

– Performance is an issue — MMU usually just points to start of page table

— but can solve that with caching (TLB, practical because of “locality of

reference”).



CSCI 4320 October 28, 2004

Slide 3

Paging Recap, Continued

• Things to look at more:

– Dealing with large address spaces.

– Extending this idea to provide “virtual memory” (by extending swapping

idea).
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Minute Essay From Last Lecture

• Given a page size of 64K (216), 64-bit addresses, and 4G (232) of main

memory, at least how much space is required for a page table?
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Large Address Spaces

• Clearly page tables can be big. How to make this feasible?

• One approach — multilevel page tables. Figure on p. 208.

• Another approach — inverted page tables (one entry per page frame). Figure

on p. 214.
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Paging and Virtual Memory

• Idea — if we don’t have room for all pages of all processes in main memory,

keep some on disk (“pretend we have more memory than we really do”).

• Or a simpler view: All address spaces live in secondary memory / swap space

/ backing store, and we “page in” as needed (demand paging).

• Consider an example . . .
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Page Tables, Revisited

• What do we need for each entry in a page table?

– Page frame number.

– Present/absent bit (was valid/invalid).

– Protection bit(s).

– “Modified since last page-in?” bit.

– “Referenced recently?” bit.

– “Okay to cache?” bit.

• Goal is to keep this somewhat minimal — mostly data the MMU needs.

If present/absent bit says “absent”, two cases — error and “page not in

memory right now” — MMU should generate “page fault” interrupt, let page

fault interrupt handler decide.
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Page Fault Processing

• If MMU finds “absent” bit on, it generates a “page fault” interrupt.

• Interrupt handler must:

– Decide whether page is invalid or just not in main memory.

– If page is invalid, error — maybe terminate process.

– If page is valid but not in main memory?

Find a free page frame and schedule I/O to get page from disk.

When disk I/O completes, retry instruction that caused page fault.

• What details do we need to fill in here?

– How to keep track of pages on disk.

– How to keep track of which page frames are free.

– (How to “schedule I/O”, but that’s later.)

– What to do if there aren’t any free page frames.
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Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where?

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — processes must know where “their” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).
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Page Fault Processing, Revisited

• What happens again during a page fault?

• Interrupt handler examines process tables, etc., to decide whether page is

“paged out” or invalid.

• If page is “paged out”, page it in and try again:

– Try to find a free frame. If none, pick one to steal (discuss later how to

choose). If it needs to be saved to disk, start I/O to do that. Update

process table, etc., for “victim” process. Block process until I/O is done.

– When we have a free frame, start I/O to bring needed page in from swap

space. Block process until done.

– Update process table, etc., for process that caused the page fault, and

restart it at instruction that generated page fault.
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Page Replacement Algorithms

• “Find a free page frame” would be easy if the current set of processes aren’t

taking up all of main memory, but what if they are?

Must steal a page frame from someone. How to choose one? “page

replacement algorithm” — several choices.

• What makes a “good” p.r.a.?
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Minute Essay

• How did the midterm compare to your expectations? easier or more difficult?

shorter or longer? topics?


