CSCT 4320 October 28, 2004

Administrivia

e None.

Slide 1

Recap — Paging

e Recall basic ideas of paging:

— Divide address spaces into pages, memory into page frames; allocate

memory page (frame) by page (frame).

— Use page tables (one per process) to keep track of things.
Slide 2 — Use MMU to translate program (virtual) addresses into memory locations
— using page table for current process. Generate “page fault” interrupt if
impossible.
Notice that we get memory protection for free; can also get memory
sharing. Related issue — might be nice to have “read-only” bit in page
table.

— Performance is an issue — MMU usually just points to start of page table
— but can solve that with caching (TLB, practical because of “locality of

reference”).




CSCT 4320 October 28, 2004

Paging Recap, Continued

e Things to look at more:
— Dealing with large address spaces.
— Extending this idea to provide “virtual memory” (by extending swapping
idea).

Slide 3

Minute Essay From Last Lecture

e Given a page size of 64K (216), 64-bit addresses, and 4G (232) of main
memory, at least how much space is required for a page table?

Slide 4




CSCT 4320 October 28, 2004

Large Address Spaces

e Clearly page tables can be big. How to make this feasible?
e One approach — multilevel page tables. Figure on p. 208.

e Another approach — inverted page tables (one entry per page frame). Figure

on p. 214.
Slide 5
Paging and Virtual Memory

e |dea — if we don’t have room for all pages of all processes in main memory,
keep some on disk (“pretend we have more memory than we really do”).

e Or a simpler view: All address spaces live in secondary memory / swap space
/ backing store, and we “page in” as needed (demand paging).

Slide 6 e Consider an example ...




CSCT 4320 October 28, 2004

Page Tables, Revisited

o What do we need for each entry in a page table?

Page frame number.

Present/absent bit (was valid/invalid).

Protection bit(s).
Slide 7

“Modified since last page-in?” bit.
— “Referenced recently?” bit.

— “Okay to cache?” bit.

e Goal is to keep this somewhat minimal — mostly data the MMU needs.

If present/absent bit says “absent”, two cases — error and “page not in
memory right now” — MMU should generate “page fault” interrupt, let page
fault interrupt handler decide.

4 )

Page Fault Processing

e |f MMU finds “absent” bit on, it generates a “page fault” interrupt.
e Interrupt handler must:
— Decide whether page is invalid or just not in main memory.
— If page is invalid, error — maybe terminate process.
Slide 8 — If page is valid but not in main memory?
Find a free page frame and schedule I/O to get page from disk.
When disk I/O completes, retry instruction that caused page fault.
e What details do we need to fill in here?
— How to keep track of pages on disk.
— How to keep track of which page frames are free.
— (How to “schedule I/O”, but that’s later.)

— What to do if there aren’t any free page frames.

. J




CSCT 4320 October 28, 2004

Keeping Track of Pages on Disk

e To implement virtual memory, need space on disk to keep pages not in main
memory. Reserve part of disk for this purpose (“swap space”); (conceptually)
divide it into page-sized chunks. How to keep track of which pages are
where?

Slide 9 o One approach — give each process a contiguous piece of swap space.
Advantages/disadvantages?

e Another approach — assign chunks of swap space individually.
Advantages/disadvantages?

e Either way — processes must know where “their” pages are (via page table
and some other data structure), operating system must know where free slots
are (in memory and in swap space).

. J

Page Fault Processing, Revisited

e What happens again during a page fault?

e Interrupt handler examines process tables, etc., to decide whether page is
“paged out” or invalid.

e [f page is “paged out”, page it in and try again:

Slide 10 — Try to find a free frame. If none, pick one to steal (discuss later how to

choose). If it needs to be saved to disk, start I/O to do that. Update
process table, etc., for “victim” process. Block process until I/O is done.

— When we have a free frame, start 1/O to bring needed page in from swap
space. Block process until done.

— Update process table, etc., for process that caused the page fault, and
restart it at instruction that generated page fault.




CSCT 4320 October 28, 2004

Page Replacement Algorithms

e “Find a free page frame” would be easy if the current set of processes aren’t

taking up all of main memory, but what if they are?

Must steal a page frame from someone. How to choose one? “page
replacement algorithm” — several choices.

Slide 11 e What makes a “good” p.r.a.?

e How did the midterm compare to your expectations? easier or more difficult?

shorter or longer? topics?

Slide 12




