
CSCI 4320 November 2, 2004

Slide 1

Administrivia

• (None.)

Slide 2

Memory References — Hardware vs. Software

• Hardware (MMU) steps:

– Does cache contain data for (virtual) address? if so, done.

– Does TLB contain matching page table entry? if so, generate physical

address and send to memory bus.

– Does page table entry (in memory) say page is present? if so, put PTE in

TLB and as above.

– If page table entry says page not present, generate page fault interrupt.



CSCI 4320 November 2, 2004

Slide 3

Memory References — Hardware vs. Software

• Page-fault interrupt handler steps:

– Is page on disk or invalid (based on entry in process table, or other o/s

data structure)? if invalid, terminate process.

– Is there a free page frame? If not, choose one to steal. If modified, write

current contents to disk (do other work while waiting), then modify PTE for

page.

– Read page contents in from disk (do other work while waiting), or zero out

new page, then modify PTE.

– Go back to original process to retry instruction that started this.

Slide 4

Memory References — Hardware vs. Software

• Some things defined by hardware architecture — structure of page table

entries, how MMU finds page table.

• A very common feature — each entry has R (“referenced”) and M (“modified”)

bits.

Set by MMU on every memory reference.

Cleared by operating system “when appropriate” — M bit when page is

replaced or written to disk, R bit when? Often want to do this periodically. A

good choice is “on clock interrupts” (generated at intervals by hardware, gives

o/s regular opportunities to do many things — more in chapter 5).



CSCI 4320 November 2, 2004

Slide 5

Finding A Free Frame — Page Replacement Algorithms

• Processing a page fault can involve finding a free page frame. Would be easy

if the current set of processes aren’t taking up all of main memory, but what if

they are? Must steal a page frame from someone. How to choose one?

• Several ways to make choice (as with CPU scheduling) — “page replacement

algorithms”.

• “Good” algorithms are those that result in few page faults.

• Choice usually constrained by what MMU provides (though that is influenced

by what would help o/s designers).

Slide 6

“Optimal” Algorithm

• Idea — if we know for each page when it will next be referenced, choose the

one for which that’s the furthest away.

• Theoretically optimal, though can’t be implemented.

• Useful as a standard of comparison — run program once on simulator to

collect data on page references, again to determine performance with this

“algorithm”. (Not clear that this is really possible with multiprogramming.)



CSCI 4320 November 2, 2004

Slide 7

“Not Recently Used” Algorithm

• Idea — choose a page that hasn’t been referenced/modified recently, hoping

it won’t be referenced again soon.

• Implementation — use page table’s R and M bits, group pages into four

classes:

– R=0, M=0.

– R=0, M=1.

– R=1, M=0.

– R=1, M=1.

Choose page to replace at random from first non-empty class.

• How good is this? Easy to understand, reasonably efficient to implement,

often gives adequate performance.

Slide 8

“First In, First Out” Algorithm

• Idea — remove page that’s been there the longest.

• Implementation — keep a FIFO queue of pages in memory.

• How good is this? Easy to understand and implement, no MMU support

needed, but could be very non-optimal.



CSCI 4320 November 2, 2004

Slide 9

“Second Chance” Algorithm

• Idea — modify FIFO algorithm so it only removes the oldest page if it looks

inactive.

• Implementation — use page table’s R and M bits, also keep FIFO queue.

Choose page from head of FIFO queue, but if its R bit is set, just clear R bit

and put page back on queue.

• Variant — “clock” algorithm (same idea, keeps pages in a circular queue).

• How good is this? Easy to understand and implement, probably better than

FIFO.

Slide 10

“Least Recently Used” (LRU) Algorithm

• Idea — replace least-recently-used page, on the theory that pages heavily

used in the recent past will be heavily used in the near future. (Usually true).

• Implementation:

– Full implementation requires keeping list of pages ordered by time of

reference. Must update this list on every memory reference.

– Only practical with special hardware — e.g.:

Build 64-bit counter C, incremented after each instruction.

On every memory reference, store C’s value in PTE.

To find LRU page, scan page table for smallest stored value of C.

• How good is this? Could be pretty good, but requires hardware we probably

won’t have.



CSCI 4320 November 2, 2004

Slide 11

“Not Frequently Used” (NFU) Algorithm

• Idea — simulate LRU in software.

• Implementation:

– Define a counter for each PTE. On every clock interrupt, update counter

for every PTE with R bit set.

– Choose page with smallest counter.

• How good is this? Reasonable to implement, could be good, but counters

track full history, which might not be a good predictor.

Slide 12

“Aging” Algorithm

• Idea — simulate LRU in software (like NFU), but give more weight to recent

history.

• Implementation similar to NFU, but increment counters by shifting right and

adding to leftmost bit — in effect, divide previous count by 2 and add bit for

recent references.

• How good is this? Pretty good approximation to LRU, though a little crude,

and limited by size of counter.



CSCI 4320 November 2, 2004

Slide 13

Intermezzo — Demand Paging, Prepaging, and Working
Sets

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?

• Most programs exhibit “locality of reference”, so a process usually isn’t using

all its pages.

• A process’s “working set” is the pages it’s using. Changes over time, with size

a function of time and also of how far back we look.

Slide 14

“Working Set” Algorithm

• Idea — steal / replace page not in recent working set. Define working set by

looking back τ time units (w.r.t. process’s virtual time). Value of τ is a tuning

parameter, to be set by o/s designer or sysadmin.

• Implementation:

– For each entry in page table, keep track of time of last reference.

– When we need to choose a page to replace, scan through page table and

for each entry:

If R bit is set, update time of last reference.

Compute time elapsed since last use. If more than τ , page can be

replaced.

– If we don’t find a page to replace that way, pick the one with oldest time of

last use. If a tie, pick at random.

• How good is this? Good, but could be slow.



CSCI 4320 November 2, 2004

Slide 15

“WSClock” Algorithm

• Idea — efficient-to-implement variation of previous algorithm, based on

circular list of pages-in-memory for process.

• Implementation — like previous algorithm, but when we need to pick a page

to replace, go around the circle and:

– If R=1, update time of last use. Compute time since last use.

– If time since last use is more than τ and M=1, schedule I/O to write this

page out (so it can maybe be replaced next time — M bit will be cleared

when I/O completes). No need to block yet, though.

– If time since last use is more than τ and M=0, replace this page.

The idea is to go around the circle until we find a page to replace, then stop.

(If we get all the way around the circle, we’ll pick some page with M=0.)

• How good is this? Makes good choices, practical to implement, apparently

widely used in practice.

Slide 16

Review — Page Replacement Algorithms

• Nice summary in textbook, table on p. 228.

• Author says best choices are aging, WSClock.



CSCI 4320 November 2, 2004

Slide 17

Minute Essay

• I plan one more lecture on memory management. Anything you’d particularly

like to hear more about?


