
CSCI 4320 December 7, 2004

Slide 1

Administrivia

• Homeworks and exams graded; averages and approximate letter grades

mailed this morning.

• Extra-credit problems will be on Web later today. Will be due next Tuesday.

Can only help your grade.

Slide 2

Security — Overview

• Goals:

– Data confidentiality — prevent exposure of data.

– Data integrity — prevent tampering.

– System availability — prevent DOS.

• What can go wrong:

– Deliberate intrusion — from casual snooping to “serious” intrusion.

– Accidental data loss — “acts of God”, hardware or software error, human

error.

CSCI 4320 December 7, 2004

Slide 3

User Authentication

• Based on “something the user knows” — e.g., passwords. Problems include

where to store them, whether they can be guessed, whether they can be

intercepted.

• Based on “something the user has” — e.g., key or smart card. Problems

include loss/theft, forgery.

• Based on “something the user is” – biometrics. Problems include

inaccuracy/spoofing.

Slide 4

Attacks From Within

• Trojan horses (and how this relates to $PATH).

• Login spoofing.

• Logic bombs and trap doors.

• Buffer overflows (and how this relates to, e.g, gets).

• And many more . . .

CSCI 4320 December 7, 2004

Slide 5

Designing a Secure System

• “Security through obscurity” isn’t very.

• Better to give too little access than too much — give programs/people as little

as will work.

• Security can’t be an add-on.

• “Keep it simple, stupid.”

Slide 6

Attacks From Outside

• Can categorize as viruses (programs that reproduce themselves when run)

and worms (self-replicating) — similar ideas, though.

• Many, many ways such code can get invoked — when legit programs are run,

at boot time, when file is opened by some applications (“macro viruses”), etc.

• Also many ways it can spread — once upon a time floppies were vector of

choice, now networks or e-mail. Common factors:

– Executable content from untrustworthy source.

– Human factors.

“Monoculture” makes it easier!

• Virus scanners can check all executables for known viruses (exact or fuzzy

matches), but hard/impossible to do this perfectly.

• Better to try to avoid viruses — some nice advice on p. 633.

CSCI 4320 December 7, 2004

Slide 7

Safe Execution of “Mobile” Code

• Is there a way to safely execute code from possibly untrustworthy source?

Maybe — approaches include sandboxing, interpretation, code signing.

• Example — Java’s designed-in security:

– At source level, very type-safe — no way to use void* pointers to

access random memory.

– When classes are loaded, “verifier” checks for potential security problems

(not generated by normal compilers, but could be done by hand).

– At runtime, security manager controls what library routines are called —

e.g., applets by default can’t do file operations, many kinds of network

access.

Slide 8

Trusted Systems

• Is it possible to write a secure O/S? Yes (says Tanenbaum).

• Why isn’t that done?

– People want to run existing code.

– People prefer (or are presumed to prefer) more features to more security.

CSCI 4320 December 7, 2004

Slide 9

Course Recap

• Four key areas (the gospel according to Pitts):

– Process management.

– Memory management.

– I/O management.

– Filesystem management.

• Also a little about history, a little about security.

Slide 10

Recap, Continued

• Some recurring themes:

– Interaction between h/w and s/w — some h/w features are there to support

o/s features; o/s influenced by what’s available in h/w.

– Trade-offs — often the answer to “which is best?” is “it depends”.

• We didn’t cover the whole book, but if you look at the ACM’s guidelines for an

undergrad o/s course — we pretty much did what they said.

CSCI 4320 December 7, 2004

Slide 11

Process Management

• O/S as virtual machine — process abstraction, “concurrent” execution, IPC,

distributed algorithms.

• O/S as resource manager — implementation of above, including interrupts

and context switches, CPU scheduling.

Slide 12

Memory Management

• O/S as virtual machine — memory protection, virtual memory,

“multiprogramming”.

• O/S as resource manager — implementation of above, including page

replacement algorithms.

CSCI 4320 December 7, 2004

Slide 13

I/O Management

• O/S as virtual machine — layered abstractions for working with I/O devices

(user-level s/w, device-independent s/w).

• O/S as resource manager — implementation of above, plus a little about

lower-level interaction with devices (programmed versus interrupt-driven I/O

versus DMA).

Slide 14

Filesystem Management

• O/S as virtual machine — filesystem abstractions (files, file attributes,

directory structures).

• O/S as resource manager — implementation of above, disk-space

management, reliability and consistency.

CSCI 4320 December 7, 2004

Slide 15

Minute Essay

• None — sign in.

• (Good luck with your finals, and have a good break!)

