
CSCI 4320 August 31, 2005

Slide 1

Administrivia

• Any problems with lab machines? if so, ask me and/or send mail to CSadmin

mailing list.

Slide 2

Why Review History?

• To understand roots/development of current operating systems.

• As a way of getting many perspectives on “what do we want an o/s to do, and

how do we make it do that?”

• (To allow the instructor to relive the days of his/her youth??)



CSCI 4320 August 31, 2005

Slide 3

The Early Days (1940s)

• Programming done by making physical connections on a plugboard (!).

• Better than no computer at all, but tedious and inefficient!

Slide 4

ENIAC



CSCI 4320 August 31, 2005

Slide 5

The Early Days (1940s – 1950s)

• Key improvements: stored-program concept, punch cards.

• Programming done by encoding machine language into cards.

• Program included code to start up computer, read rest of program into

memory, do all input and output, etc. (no operating system).

• One program at a time, machine operated by programmer.

• Better, but still tedious and inefficient!

Slide 6

The Early Days (1950s)

• Key improvements: assemblers and compilers, libraries of commonly-used

code, specialists to run machine (operators).

• Programming done in assembly language (or early high-level language),

punched into cards.

• Separate steps to translate to machine language, execute.

• One program at a time, but machine operated by specialist.

• Less tedious, less inefficient.

• Still cumbersome for programmers, CPU idle between steps.



CSCI 4320 August 31, 2005

Slide 7

Batch Systems (1950s)

• Key improvement: “batch” idea — automate transitions between steps

(translate program, execute, translate next program, etc.).

• How to make this work? separate input by “control cards”, write primitive

operating system to interpret them, manage transitions.

• Less inefficient, but I/O devices slow, so CPU idle a lot — still one program at

a time.

• Still cumbersome for programmers — punch program into cards, give to

operator, wait for output.

Slide 8

Multiprogramming Systems (1960s – ?)

• Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

• How to make this work? requires much more complex operating system —

must share memory and I/O devices among programs, switch between them,

etc.

• Efficient use of hardware.

• Still cumbersome for programmers — no real changes here.



CSCI 4320 August 31, 2005

Slide 9

IBM 360

Slide 10

Timesharing Systems (1960s – ?)

• Key improvements: “interactive” users (using text terminals), utility programs

to support them (shells, text editors, etc.).

• How to make this work? like multiprogramming, but now programs sharing

memory are interactive users wanting fast response.

• Efficient use of hardware.

• Much less cumbersome for program development!



CSCI 4320 August 31, 2005

Slide 11

Personal Computers (1980s – ?)

• Similar evolution of operating systems — initially very simple, gradually

becoming more complex/capable.

• Features from mainframes adopted as hardware permitted.

• A key difference — emphasis on user convenience rather than efficient use of

hardware.

Slide 12

Evolution of Operating Systems, Recap

• Increasing hardware capability.

• Increasing o/s functionality and complexity — from simple program loader to

complex multitasking system.

• Parallels between evolution of mainframe o/s and PC o/s.



CSCI 4320 August 31, 2005

Slide 13

Minute Essay

• None — sign in.


