
CSCI 4320 September 2, 2005

Slide 1

Administrivia

• Classes next week: I plan to be at a conference but may be able to find a

guest lecturer. I’ll notify you via the course Web page and e-mail.

• Homework 1 to be on Web by next week. Due the following week.

• (Minute essays from first class — people did some interesting things over the

summer!)

Slide 2

Operating System Functionality

• Provide a “virtual machine”:

– Filesystem abstraction — files, directories, ownership, access rights, etc.

– Process abstraction — “process” is a name for one of a collection of

“things happening at the same time” (in effect if not in fact), including:

∗ In batch systems, user “jobs”, plus input/output spooling.

∗ In timesharing system, interactive users.

∗ In PC o/s, concurrently-executing tasks.

Here too, idea of ownership / access rights.

• Manage resources (probably on behalf of multiple users/applications):

– Memory.

– CPU cycles (one or more CPUs).

– I/O devices.



CSCI 4320 September 2, 2005

Slide 3

Overview of Hardware

• Simplified view of hardware (as it appears to programmers) — processor(s),

memory, I/O devices, bus.

• (See figure, p. 21.)

• Next few sections talk about each component — what it does (from user’s

point of view) and low-level interface to software. Today, look at processor

only; other components later.

Slide 4

Processors

• “Instruction set” of primitive operations — load/store, arithmetic/logical

operations, control flow.

• Basic CPU cycle — fetch instruction, decode, execute.

• Registers — “local memory” for processor; general-purpose registers for

arithmetic and other operations, special registers (program counter, stack

pointer, program status word (PSW)).

• Now consider what additional features would make it easier to write an

operating system . . .



CSCI 4320 September 2, 2005

Slide 5

Interrupt Mechanism

• Very useful to have a way to interrupt current processing when an unexpected

or don’t-know-when event happens — error occurs (e.g., invalid operation),

I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally o/s code that saves other registers, re-enables interrupts, decides

what to do next, etc.

• Usually have a TRAP instruction for generating interrupt.

• Could you write an o/s without this?

Slide 6

Dual-Mode Operation, Privileged Instructions

• Useful to have mechanism to keep application programs from doing things

that should be reserved for o/s.

• Usual approach — in hardware, define two modes for processor (supervisor

and user), privileged instructions.

– Privileged instructions — things only o/s should do, e.g., enable/disable

interrupts.

– Bit in PSW indicates supervisor mode (o/s only, privileged instructions

okay) or user mode (application programs, privileged instructions not

allowed).

– When to switch modes? when o/s starts application program, when

application program requests o/s services, on error.

• Could you write an o/s without this?



CSCI 4320 September 2, 2005

Slide 7

Memory Protection

• Very useful to have a way to give each process (including o/s) its own

variables that other processes can’t alter.

• Usual approach — provide a hardware mechanism such that attempting to

access memory out of ranges generates exception/interrupt; several ways,

including:

– Limit each process to a range of memory locations; hold starting and

ending addresses in special registers.

– Partition memory into blocks, give each block a numeric key, give each

process a key, and only allow processes to access blocks if keys match.

• Could you write an o/s without this?

Slide 8

Timer

• Useful to have a way to set a timer / “alarm clock” — e.g., to get control back if

application program enters infinite loop.

• Usual approach — hardware features that tracks real time and can be set to

interrupt CPU.



CSCI 4320 September 2, 2005

Slide 9

Operating System Services, Again

• Process management.

• Memory management.

• I/O subsystem.

• File systems.

• Security.

• Shell.

Slide 10

Shell

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of o/s, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com; Unix sh, bash, csh, tcsh,

ksh, zsh, . . .



CSCI 4320 September 2, 2005

Slide 11

System Calls

• Recall — some things can/should only be done by o/s (e.g., I/O), but

application programs need to be able to request them.

• How to make this work — “system call” (good discussion on pp. 45–46):

– Library routine (running in user mode) sets up parameters and issues

TRAP instruction or similar — causing an interrupt.

– Interrupt handler (running in supervisor mode) processes system call

using parameters set up by library routine.

– Control returns to library routine in user mode.

• Typical services provided — creating processes, creating files and directories,

etc., etc. — see tables in textbook (Unix on p. 47, Windows on p. 55).

Slide 12

Minute Essay

• I once had a learning experience about “how DOS is different from a real o/s”.

Summary version: A program using pointers (possibly uninitialized) caused

the whole machine to lock up, so thoroughly that the only recovery was to

power-cycle.

What do you think went wrong?



CSCI 4320 September 2, 2005

Slide 13

Minute Essay Answer

• The program changed memory at the addresses pointed to by the uninitialized

pointers — and this memory was being used by the o/s, possibly to store

something related to interrupt handling. A “real” o/s wouldn’t allow this!


