
CSCI 4320 September 14, 2005

Slide 1

Administrivia

• Homework 1 due Friday (5pm). Submit code by e-mail; details in homework
writeup. Turn in non-code problems in hardcopy form, in class or in my
mailbox in the department office.

Questions? Remember that I have “open lab” this afternoon and regular office
hours tomorrow.

• Minute essay from last time — answer in slides; any questions?

Slide 2

Overview of Hardware, Continued

• Simplified view of hardware (as it appears to programmers) — processor(s),
memory, I/O devices, bus.

• Next few sections talk about each component — what it does (from user’s
point of view) and low-level interface to software.



CSCI 4320 September 14, 2005

Slide 3

Processors — Recap

• Basics — instruction set (primitive operations), basic fetch/decode/execute
cycle, registers.

• Additional features that help in writing effective operating systems — interrupt
mechanism, dual-mode operation and privileged instructions, memory
protection, timer.

Slide 4

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:
registers, cache, RAM, magnetic disk, magnetic tape. (See picture, p. 24.)

• Note also — some types volatile, some non-volatile.



CSCI 4320 September 14, 2005

Slide 5

Program Relocation

• At the machine-instruction level, references to memory are in terms of an
absolute number. Compilers/assemblers can generate these only by making
assumption about where program will reside in memory.

• In the very early days, programs started at 0, so no problem. Now they hardly
ever do, so we need a way to relocate programs — when loaded, or “on the
fly”.

• “On the fly” relocation uses MMU (memory management unit) — which can
provide both program relocation and memory protection.

Logically between CPU and memory, physically usually part of CPU.

A simple scheme — base and limit registers (described in text). When do
values in them need to change?

Slide 6

I/O Devices

• What they provide (from the user’s perspective):

– Non-volatile storage (disks, tapes).

– Connections to outside world (keyboards, microphones, screens, etc.,
etc.).

• Distance between hardware and “virtual machine” is large here, so usually
think in terms of:

– Layers of s/w abstraction (as with other parts of o/s).

– Layers of h/w abstraction too: most devices attached via controller, which
provides a h/w layer of abstraction (e.g., “IDE controller”).



CSCI 4320 September 14, 2005

Slide 7

I/O Basics

• CPU communicates with device controller by reading/writing device registers;
device controller communicates with device.

• Memory-mapped I/O versus I/O instructions.

• Polling versus interrupts.

• Functionality for a particular device packaged as “device driver”.

• I/O in application programs — make system call.

• Recap: application program↔ system call (to o/s)↔ device driver↔ device
controller↔ device

Slide 8

Operating System Services, Again

• Process management.

• Memory management.

• I/O subsystem.

• File systems.

• Security.

• Shell (discussed last time).



CSCI 4320 September 14, 2005

Slide 9

Process Management

• “Process” abstraction to represent one of a collection of “things happening at
the same time”.

A working definition — “program in execution” (program code plus associated
variables, sequence of states tracking progress through code and changes in
variables).

• “Concurrent” execution via interleaving of actions.

In effect, each process has a “virtual CPU”, with the actual CPU repeatedly
suspending one process to work on another (“context switch”).

• O/s must provide a way to manage this, including ways to create processes,
allow/force them to terminate, communicate among them (e.g., to
coordinate/synchronize).

Slide 10

Memory Management

• Managing physical memory:

– How to divide it up among processes/programs/users — each has an
“address space” of memory it can access.

– How to protect each process’s memory from other processes (requires h/w
support, but managed by o/s).

• Managing address spaces (virtual memory):

– Originally, address space limited by size of physical memory.

– “Virtual memory” allows bigger address spaces, by shuffling data between
disk and physical memory.



CSCI 4320 September 14, 2005

Slide 11

I/O Subsystem

• Encapsulates messy low-level details.

• Allows sharing of I/O devices among programs/users.

Slide 12

File Systems

• “File system” abstraction, including:

– “File” abstraction — collection of related information, possibly with
associated ownership, permissions, timestamps, etc.

– “Directory” abstraction.

– “Path names” — absolute and relative.

– “Opening a file” — connecting program to file (check permissions, etc.,
return “file descriptor”).

• Additional Unix ideas/terms:

– Mounting filesystems.

– Special files — idea is to treat other devices (e.g., printers) like files.

– Pipes — connections between processes that can be treated like file.



CSCI 4320 September 14, 2005

Slide 13

Security

• Protect users/applications from each other.

• Protect users/applications from the outside world.

Slide 14

Minute Essay

• How much of chapter 1 have you read, and how do you like this text?


