
CSCI 4320 September 26, 2005

Slide 1

Administrivia

• (None.)

Slide 2

9/21 Minute Essay Followup

• “Seems like this competition for memory is a lot like competition for I/O, and

generalized is just deadlock.” (Review definition of mutual exclusion.)

• “Issues with multiple critical regions may cause problems with these

solutions.” (Review definition of critical region.)

• More examples of mutual exclusion (or similar problems): users changing

same password, Web servers, concurrent access to database, buying a ticket

online and having price change mid-transaction, print server.



CSCI 4320 September 26, 2005

Slide 3

9/23 Minute Essay Followup

• “Does Peterson’s algorithm scale up to more than two processes?” It can be

extended to n processes, but the result is complicated. A simpler algorithm

for n processes that also doesn’t need hardware support is Lamport’s bakery

algorithm.

• “If every process uses a register, wouldn’t this be unscalable?” (Review

“virtual CPU” idea.)

Slide 4

Semaphores — Recap

• Semaphore ADT:

– Value — non-negative integer.

– Two operations, up and down; both atomic.

• Last time — solution to mutual exclusion problem using semaphores.



CSCI 4320 September 26, 2005

Slide 5

Bounded Buffer Problem

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).

Slide 6

Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.



CSCI 4320 September 26, 2005

Slide 7

Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.

Slide 8

Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?



CSCI 4320 September 26, 2005

Slide 9

Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}

Slide 10

Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.



CSCI 4320 September 26, 2005

Slide 11

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .

Slide 12

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr() mostly like before; see p. 113.



CSCI 4320 September 26, 2005

Slide 13

Minute Essay

• Alleged joke (from some random Usenet person):

A man’s P should exceed his V else what’s a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)

Slide 14

Minute Essay Answer

• It’s a pun. The idea is roughly that if you never have a situation in which

you’ve attempted more “down” operations than “up” operations, you didn’t

need a semaphore. (Or that’s what I think it means. The author might have

another idea!)


