
CSCI 4320 September 28, 2005

Slide 1

Administrivia

• Please do not reboot the machines in HAS 340! People use these remotely,
and you may cause someone’s program to crash. If you think a reboot is
needed, ask a faculty member.

(If the machines seem to be very slow, odds are it’s a background program
running. Try another machine.)

• (Review minute essay from last time.)

Slide 2

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {
bool zero;
enter_cr();
zero = (value == 0);
if (!zero)

value -= 1;
else

enqueue(current_process, queue);
leave_cr();
if (zero)

block(); // mark current process blocked
}

up() {
process p = null;
enter_cr();
if (empty(queue))

value += 1;
else

p = dequeue(queue);
leave_cr();
if (p != null)

unblock(p); // mark p runnable
}

• enter cr(), leave cr() mostly like before; see p. 113.



CSCI 4320 September 28, 2005

Slide 3

Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer
not empty):

– Value — queue of suspended processes.

– Operations:
∗ Wait — suspend execution (and release mutual exclusion).
∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”).

Slide 4

Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and
remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:
while (true) {

item = generate();
B.insert(item);

}

Pseudocode for consumers:
while (true) {

B.remove(item);
use(item);

}



CSCI 4320 September 28, 2005

Slide 5

Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty
int count = 0;
condition full;
condition empty;

• Procedures:

insert(item itm) {
if (count == N)

wait(full);
put(itm, B);
count += 1;
signal(empty);

}

remove(item &itm) {
if (count == 0)

wait(empty);
itm = get(B);
count -= 1;
signal(full);

}

Slide 6

Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)
semaphores.

• Java’s methods for thread synchronization are based on monitors:

– Data for monitor is instance variables (data for class).

– Procedures for monitor are synchronized methods/blocks — mutual
exclusion provided by implicit object lock.

– wait, notify, notifyAll methods.

– No condition variables, but above methods provide more or less equivalent
functionality.



CSCI 4320 September 28, 2005

Slide 7

Message Passing

• Previous synchronization mechanisms all involve shared variables, okay in
some circumstances but not very feasible in others (e.g., multiple-processor
system without shared memory).

• Idea of message passing — each process has a unique ID; two basic
operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some
way to let source ID be “any”.

Slide 8

Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement
but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to
implement).

– Messages from process A to process B arrive in the order in which they
were sent.



CSCI 4320 September 28, 2005

Slide 9

Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must
send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address
space to address space) or somehow be clever.

(Why would you want to do this? programming model is in some ways
simpler, doesn’t require memory shared among processes.)

Slide 10

Minute Essay

• Which of the following have you done?

– Message-passing programming?

– Multithreaded programming in Java?

– Other parallel/concurrent/threaded programming? (What?)


