CSCI 4320 September 28, 2005

Administrivia

® Please do not reboot the machines in HAS 340! People use these remotely,
and you may cause someone’s program to crash. If you think a reboot is
needed, ask a faculty member.

(If the machines seem to be very slow, odds are it’s a background program
running. Try another machine.)

Slide 1
o (Review minute essay from last time.)
Implementing Semaphores, Continued
e Variables — integer value, queue of process IDs queue.
down() { up()
bool zero; process p = null;
enter_cr(); enter_cr();
zero = (value == 0); if (empty(queue))
if (!zero) value += 1;
value -= 1; else
. else p = dequeue(queue);
Sllde 2 enqueue (current_process, gqueue); leave_cr();
leave_cr(); if (p != null)
if (zero) unblock(p); // mark p runnable
block(); // mark current process blotked

}

e enter_cr (), leave_cr () mostly like before; see p. 113.




CSCI 4320 September 28, 2005

Monitors

e History — Hoare (1975) and Brinch Hansen (1975).
e |dea — combine synchronization and object-oriented paradigm.
e A monitor consists of
— Data for a shared object (and initial values).
Slide 3 — Procedures — only one at a time can run.
e “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer
not empty):
— Value — queue of suspended processes.
— Operations:
* Wait — suspend execution (and release mutual exclusion).

* Signal — if there are processes suspended, allow one to continue. (if
not, signal is “lost”).

Bounded Buffer Problem, Revisited

e Define a bounded_buf fer monitor with a queue and insert and
remove procedures.
e Shared variables:

bounded_buffer B(N);
Slide 4

Pseudocode for producers: Pseudocode for consumers:
while (true) { while (true) {
item = generate(); B.remove(item) ;
B.insert(item); use(item) ;




CSCI 4320 September 28, 2005

Bounded-Buffer Monitor

e Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

Slide 5

e Procedures:

insert(item itm) { remove (item &itm) {
if (count == N) if (count == 0)
wait(full); wait (empty);

put(itm, B); itm = get(B);
count += 1; count -= 1;

signal (empty) ; signal(full);

Implementing Monitors

e Requires compiler support, so more difficult to implement than (e.g.)
semaphores.

e Java’s methods for thread synchronization are based on monitors:

— Data for monitor is instance variables (data for class).

Slide 6 Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

wait,notify,notifyAll methods.

No condition variables, but above methods provide more or less equivalent

functionality.




CSCI 4320 September 28, 2005

Message Passing

e Previous synchronization mechanisms all involve shared variables, okay in
some circumstances but not very feasible in others (e.g., multiple-processor
system without shared memory).

e |dea of message passing — each process has a unique ID; two basic
Slide 7 operations:
— Send — specify destination ID, data to send (message).

— Receive — specify source ID, buffer to hold received data. Usually some
way to let source ID be “any”.

Message Passing, Continued

e Exact specifications can vary, but typical assumptions include:

— Sending a message never blocks a process (more difficult to implement
but easier to work with).

— Receiving a message blocks a process until there is a message to receive.
Slide 8 — All messages sent are eventually available to receive (can be non-trivial to
implement).

— Messages from process A to process B arrive in the order in which they

were sent.




CSCI 4320 September 28, 2005

Implementing Message Passing

® On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.
o On a machine with physically shared memory, can either copy (from address
space to address space) or somehow be clever.

Slide 9 (Why would you want to do this? programming model is in some ways
simpler, doesn’t require memory shared among processes.)

e Which of the following have you done?
— Message-passing programming?
— Multithreaded programming in Java?

— Other parallel/concurrent/threaded programming? (What?)
Slide 10




