
CSCI 4320 October 12, 2005

Slide 1

Administrivia

• Homework 2 on Web. One required problem and one optional problem (both

about scheduling) being revised. Come talk to me if you’ve already started

work on these problems.

Due date needs to be Tuesday, no exceptions, so I can distribute a solution. I

will distribute a solution for Homework 1 Monday.

• Review sheet for midterm on Web. Mostly helpful in telling you about format

of exam.

• (Review minute essay question from last time.)

Slide 2

Recap — Scheduling Algorithms

• Main idea — decide which process to run next (when running process exits,

becomes blocked, or is interrupted).

• Goal is to make decisions in a way that meets system objectives (minimize

average turnaround time, maximize CPU usage, etc.)

• Some simple algorithms discussed last time. Some (e.g., FCFS) have limited

practical value, but notice how many there are — many ways to approach the

problem of “who’s next?”



CSCI 4320 October 12, 2005

Slide 3

Multiple-Queue Scheduling

• Basic idea — variant on priority scheduling:

– Divide processes into “priority classes”.

– When picking a new process, pick one from the highest-priority class with

ready processes.

– Within a class, use some other algorithm to decide (round-robin, e.g.).

– Optionally, periodically lower processes’ priorities.

Slide 4

Shortest Process Next

• Basic idea — like SJF, but for interactive processes:

– Consider each interactive process as sequence of “jobs”.

– In picking next process, pick the one with the shortest time.

– Estimate time based on past performance:

One way is “aging” — weighted sum of previous estimate and most recent

run. Can be easy to calculate, emphasizes more recent behavior.



CSCI 4320 October 12, 2005

Slide 5

Some Other Scheduling Algorithms

• Guaranteed scheduling.

“Guarantee” each process (of N) 1/N of the CPU cycles; (try to) schedule to

make this true.

Calculate, for each process, fraction of the time it has had the CPU in its

lifetime, fraction it “should” have had; choose process for which actual time /

entitled time is smallest.

• Lottery scheduling.

Give each process one or more “lottery tickets” — more or fewer depending

on its priority (so to speak); pick one at random to decide who’s next.

• Fair-share scheduling.

Factor in process’s owner in deciding which process to pick. I.e., if two “equal”

users, schedule processes such that user A’s processes get about as much

time as those of user B.

Slide 6

Scheduling in Real-Time Systems

• “Real-time system” — system in which events must (“hard real time”) or

should (“soft real time”) be handled by some deadline. Often events to be

handled are periodic, and we know how often they arrive and how long they

take to process.

• Role of scheduler in such systems could be critical.

• An interesting question — sometimes getting everything scheduled on time is

impossible (example?). If we know periodicity and time-to-handle of all types

of events, can we decide this?

Suppose we have m types of events, and event type i has period Pi and

time-to-handle Ci.

General formula on p. 149; can be derived by extending from case where

m = 1 . . .

• Complex topic, see chapter 7 for more info.



CSCI 4320 October 12, 2005

Slide 7

Scheduling and Threads

• If system uses both processes and threads, we now possibly have an

additional level of scheduling.

• Details depend on whether threads are implemented in user space or kernel

space:

– In user space — runtime system that manages them must do scheduling,

and without the benefit of timer interrupts.

– In kernel space — scheduling done at o/s level, so context switches are

more expensive, but timer interrupts are possible, etc.

Slide 8

Evaluating Scheduling Algorithms

• How to decide which scheduling algorithm to use?

• One way — evaluate several choices, see which one best meets system

goal(s). E.g., if the goal is minimum turnaround time, try to come up with an

average turnaround time for each proposed choice.

• Several approaches possible . . .



CSCI 4320 October 12, 2005

Slide 9

Deterministic Modeling

• Idea — use a predetermined workload, compute values of interest (e.g.,

average turnaround time).

• How well does it work?

– Simple, fast, gives exact numbers.

– Requires exact numbers as input, and only applies to them.

Slide 10

Queueing Models

• Idea — use “queueing theory” to model system as a network of “servers”,

each with a queue of waiting processes. (E.g., CPU is a server, with input

queue of ready processes.)

• Input to model — distribution of process arrival times, CPU and I/O bursts for

processes, as mathematical formulas. (Base this on measuring,

approximating, or estimating.) In queueing-theory terms, “arrival rates” and

“service rates”.

• Queueing theory lets you then compute utilization, average queue length,

average wait time, etc.

• How well does it work?

– Seems more general than deterministic modeling.

– But can be tricky to set up model correctly, and need to approximate /

make assumptions may be a problem.



CSCI 4320 October 12, 2005

Slide 11

Simulations

• Idea — program a model of the computer system, simulating everything,

including hardware.

• Two ways to get input for simulation:

– Generate processes, burst times, arrivals, departures, etc., using

probability distributions and random-number generation.

– Create “trace tape” from running system.

• How well does it work?

– Potentially very accurate.

– Time-consuming to program and to run!

Slide 12

Implementation

• Idea — code it up and try it!

• How well does it work?

– Seems like potentially the most accurate approach.

– Requires a lot of work, resources.

– Involves implicit assumption that users’ behavior is fairly constant.

• Because of this last point — it’s good to build into the algorithm some

parameters that can be changed at run time, by users and/or sysadmin. In

textbook’s phrase, “separate mechanism from policy”.



CSCI 4320 October 12, 2005

Slide 13

What Do Real Systems Use?

• Traditional Unix: two-level approach (upper level to swap processes in/out of

memory, lower level for CPU scheduling), using multiple-queue scheduling for

CPU scheduling. See chapter 10 for details.

• Linux: facilities for soft real-time scheduling and “timesharing” scheduling,

with the latter a mix of priority and round-robin scheduling. See chapter 10 for

details.

• Windows NT/2000: multiple-queue scheduling of threads, with round-robin for

each queue. See chapter 11 for details.

• MULTICS: multiple-queue scheduling.

• MVS (IBM mainframe): three-level scheme with lots of options for

administrator(s) to define complex policies.

Slide 14

Minute Essay

• None — sign in.


