
CSCI 4320 October 17, 2005

Slide 1

Administrivia

• Reminder: Midterm exam Wednesday. Open (text)book, open notes. Review
sheet on Web. Review session Tuesday at 4pm in HAS 228 (assuming it’s
available).

• Reminder: Homework 2 due tomorrow at noon. Not accepted late (except for
the extra-credit programming problem).

• Homework 1 solution available today (except for programming problem).
Homework 2 solution available tomorrow at noon (outside my office).

Slide 2

One More Recap — Scheduling Algorithms

• Main idea — decide which process to run next (when running process exits,
becomes blocked, or is interrupted).

• Many possibilities, ranging from simple to complex. Real systems seem to
use hybrid strategies.

• How to choose one?

– Be clear on goals.

– Maybe evaluate some possibilities to see which one(s) meet goals —
analytic or experimental evaluation.

– Build in some tuning knobs — “separate policy from mechanism”.



CSCI 4320 October 17, 2005

Slide 3

What Do Real Systems Use?

• Traditional Unix: two-level approach (upper level to swap processes in/out of
memory, lower level for CPU scheduling), using multiple-queue scheduling for
CPU scheduling. See chapter 10 for details.

• Linux: facilities for soft real-time scheduling and “timesharing” scheduling,
with the latter a mix of priority and round-robin scheduling. See chapter 10 for
details.

• Windows NT/2000: multiple-queue scheduling of threads, with round-robin for
each queue. See chapter 11 for details.

• MVS (IBM mainframe): three-level scheme with lots of options for
administrator(s) to define complex policies.

Slide 4

Deadlocks — Introduction

• Some resources should not be shared — among processes, computers, etc.

• To enforce this, o/s (or whatever) provides mechanism to give one process at
a time exclusive use, make others wait.

• Possibility exists that others will wait forever — deadlock.



CSCI 4320 October 17, 2005

Slide 5

Resources

• “Resource” is anything that should be used by only one process at a time —
hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, particular database record) or non-unique (e.g., one
block of a fixed-size disk area such as swap space).

• Preemptible versus non-preemptible — preemptible resources can be taken
away from current owner without causing something to fail (e.g., memory);
non-preemptible resources can’t (e.g., hardware device).

• Normal sequence for using a resource — request it, use it, release it. If not
available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if
processes aren’t disciplined.

Slide 6

Deadlocks — Definitions and Conditions

• Definition — set of processes is “deadlocked” if each process in set is waiting
for an event that only another process in set can cause.

• Necessary conditions:

– Mutual exclusion — resources can be used by at most one process at a
time.

– Hold and wait — process holding one resource can request another.

– No preemption — resources cannot be taken away but must be released.

– Circular wait — circular chain of processes exists in which each process is
waiting for resource held by next.

• Modeling deadlock — “resource graphs” — examples pp. 165-166.



CSCI 4320 October 17, 2005

Slide 7

What To Do About Deadlocks — Nothing

• One strategy for dealing with deadlocks — “ostrich algorithm” (ignore
potential for deadlocks, hope they don’t happen).

• Does this work? not always, but simple to implement, and in practice works
most of the time.

Slide 8

What To Do About Deadlocks — Detection and Recovery

• How to detect deadlocks — DFS on resource graph, (or if more than one
resource of each type, algorithm of pp. 171–172).

• When to check for deadlocks:

– Every time a resource is requested.

– At regular intervals.

– When CPU utilization falls below threshold.

• What to do if deadlock is found?

– Preemption.

– Rollback.

– Process termination.

• Does this work? yes, but potentially time-consuming, and “what to do”
choices aren’t very attractive!



CSCI 4320 October 17, 2005

Slide 9

What To Do About Deadlocks — Avoidance

• Can base on idea of “safe” states (in which it’s possible to schedule to avoid
deadlock) versus “unsafe” states (in which it’s not). Idea is to avoid unsafe
states. See discussion p. 176.

• “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for
resource if it leads to unsafe state. Details on pp. 178–179.

• Does this work? yes, but not much used because it assumes a fixed number
of processes, resource requirements known in advance.

Slide 10

What To Do About Deadlocks — Prevention

• Idea here is to make it impossible to satisfy one of the four conditions for
deadlock.

• Mutual exclusion — don’t allow more than one process to use a resource.
E.g., define a printer-spool process to manage printer.

Solves immediate problem but may produce others.

• Hold and wait — require processes to request all resources at the same time
and either get them all or wait.

Works but may not be possible or efficient.

• No preemption — allow preemption. Not usually possible/desirable.

• Circular wait — impose strictly increasing ordering on resources, and insist
that all processes request resources “in order”.

Works, but finding an ordering may be difficult.



CSCI 4320 October 17, 2005

Slide 11

Deadlocks — Summary

• Take-home message — there’s some interesting theory related to this topic,
but not a lot of practical advice, except for deadlock prevention.

Slide 12

Minute Essay

• Anything you’d particularly like for me to talk about at the review session? (Or
send me mail between now and then.)


