
CSCI 4320 October 28, 2005

Slide 1

Administrivia

• (None?)

Slide 2

Paging — Recap

• Recall basic ideas of paging:

– Divide address spaces into pages, memory into page frames; allocate

memory page (frame) by page (frame).

– Use page tables (one per process) to keep track of things.

– Use MMU to translate program (virtual) addresses into memory locations

— using page table for current process. Generate “page fault” interrupt if

impossible.

• Some issues — performance, what to do about large page tables — but

solvable.



CSCI 4320 October 28, 2005

Slide 3

Paging and Virtual Memory

• Idea — if we don’t have room for all pages of all processes in main memory,

keep some on disk (“pretend we have more memory than we really do”).

• Or a simpler view: All address spaces live in secondary memory / swap space

/ backing store, and we “page in” as needed (demand paging).

• Making this work requires help from both hardware (MMU) and software

(operating system).

Slide 4

Processing Memory References — MMU

• Does cache contain data for (virtual) address? If so, done.

• Does TLB contain matching page table entry? If so, generate physical

address and send to memory bus.

• Does page table entry (in memory) say page is present? If so, put PTE in TLB

and as above.

• If page table entry says page not present, generate page fault interrupt.

Transfers control to interrupt handler.



CSCI 4320 October 28, 2005

Slide 5

Processing Memory References — Page Fault Interrupt
Handler

• Is page on disk or invalid (based on entry in process table, or other o/s data

structure)? If invalid, error — terminate process.

• Is there a free page frame? If not, choose one to steal. If it needs to be saved

to disk, start I/O to do that. Update process table, PTE, etc., for “victim”

process. Block process until I/O done.

• Start I/O to bring needed page in from swap space (or zero out new page). If

I/O needed, block process until done.

• Update process table, etc., for process that caused the page fault, and restart

it at instruction that generated page fault.

Slide 6

Processing Memory References — Details Still To Fill In

• How to keep track of pages on disk.

• How to keep track of which page frames are free.

• How to “schedule I/O” (but that’s later).

• How to choose a page frame to “steal”.



CSCI 4320 October 28, 2005

Slide 7

Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where?

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — processes must know where “their” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).

Slide 8

Finding A Free Frame — Page Replacement Algorithms

• Processing a page fault can involve finding a free page frame. Would be easy

if the current set of processes aren’t taking up all of main memory, but what if

they are? Must steal a page frame from someone. How to choose one?

• Several ways to make choice (as with CPU scheduling) — “page replacement

algorithms”.

• “Good” algorithms are those that result in few page faults. (What happens if

there are many page faults?)

• Choice usually constrained by what MMU provides (though that is influenced

by what would help o/s designers).



CSCI 4320 October 28, 2005

Slide 9

Processing Memory References — Hardware
vs. Software

• Some things defined by hardware architecture — structure of page table

entries, how MMU finds page table.

• A very common feature — each entry has R (“referenced”) and M (“modified”)

bits.

Set by MMU on every memory reference.

Cleared by operating system “when appropriate” — M bit when page is

replaced or written to disk, R bit when? Often want to do this periodically. A

good choice is “on clock interrupts” (generated at intervals by hardware, gives

o/s regular opportunities to do many things — more in chapter 5).

Slide 10

Minute Essay

• In class I told a story: Once upon a time, a mainframe computer was running

very slowly. The sysadmins were puzzled, until one of them noticed that one

of the disk drives seemed to be very busy and asked “which disk are you

using for paging?” The answer made everyone say “aha!” What was wrong

(to make the system so slow)?



CSCI 4320 October 28, 2005

Slide 11

Minute Essay Answer

• The disk being used for paging was the one that was very busy. So, mostly

likely the system was spending so much time paging (“thrashing”) that it

wasn’t able to get anything else done. Usually this means that the system

isn’t able to keep up with active processes’ demand for memory.


