
CSCI 4320 November 4, 2005

Slide 1

Administrivia

• Homework 3 on Web (except for programming problem, to be added later
today). Due next Friday.

Slide 2

Page Replacement Algorithms, Continued

• Key idea — if all page frames (slots in main memory) are in use, but we need
to bring in a page from swap space on disk, must “steal” a page frame. Which
one?

• Many strategies, varying degrees of practicality.

• A few more to discuss, based on idea that each process has a “working set”
of pages that need to be in memory.

(Minute essay question from previous lecture — what happens if combined
sizes, plus pages for o/s, exceeds main memory?)



CSCI 4320 November 4, 2005

Slide 3

“Working Set” Algorithm

• Idea — steal / replace page not in recent working set. Define working set by
looking back τ time units (w.r.t. process’s virtual time). Value of τ is a tuning
parameter, to be set by o/s designer or sysadmin.

• Implementation:

– For each entry in page table, keep track of time of last reference.

– When we need to choose a page to replace, scan through page table and
for each entry:
If R bit is set, update time of last reference.
Compute time elapsed since last use. If more than τ , page can be
replaced.

– If we don’t find a page to replace that way, pick the one with oldest time of
last use. If a tie, pick at random.

• How good is this? Good, but could be slow.

Slide 4

“WSClock” Algorithm

• Idea — efficient-to-implement variation of previous algorithm, based on
circular list of pages-in-memory for process.

• Implementation — like previous algorithm, but when we need to pick a page
to replace, go around the circle and:

– If R=1, update time of last use. Compute time since last use.

– If time since last use is more than τ and M=1, schedule I/O to write this
page out (so it can maybe be replaced next time — M bit will be cleared
when I/O completes). No need to block yet, though.

– If time since last use is more than τ and M=0, replace this page.

The idea is to go around the circle until we find a page to replace, then stop.
(If we get all the way around the circle, we’ll pick some page with M=0.)

• How good is this? Makes good choices, practical to implement, apparently
widely used in practice.



CSCI 4320 November 4, 2005

Slide 5

Review — Page Replacement Algorithms

• Nice summary in textbook, table on p. 228.

• Author says best choices are aging, WSClock.

Slide 6

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not
always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page
replacement algorithms.

• Modeling based on simplified version of reality — one process only, known
inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate
number of page faults.

• How is this useful? can compare different algorithms, and also determine if a
given algorithm is a “stack algorithm” (more memory means fewer page
faults).



CSCI 4320 November 4, 2005

Slide 7

Paging — Other Design Issues

• In deciding which page to replace, consider all pages (“global allocation”), or
just those that belong to the current process (“local allocation”)?

Generally, global approach works better, but not all page replacement
algorithms can work that way (e.g., WSClock). Hybrid strategy — combine
local approach with some way to vary processes’ allocations.

• What happens if combined working sets of all processes don’t fit into
memory? “Thrashing”.

What to do? temporarily “swap out” some processes, or other forms of “load
control”.

• Maintaining a supply of free frames — desirable, could do by having a “paging
daemon” in background.

Slide 8

Paging — Other Hardware Issues

• What if page to be replaced is waiting for I/O? probably trouble if we replace it
anyway.

• One solution — allow pages to be “locked”.

• Another solution — do all I/O to o/s pages, then move to user pages.



CSCI 4320 November 4, 2005

Slide 9

Minute Essay

• Consider the following code:

double a[BIGNUM][BIGNUM];
for (int i = 0; i < BIGNUM; ++i)
for (int j = 0; j < BIGNUM; ++j)

a[i][j] = i+j;

Reversing the order of the loops can have a big effect on execution time.
Why? (Actually there are two possible explanations, depending on how big
BIGNUM is.)

Slide 10

Minute Essay Answer

• Accessing all elements of a large data structure is faster if contiguous
elements are accessed one after another (rather than skipping around).
Depending on the size of the array, skipping around could produce extra
paging or more cache misses. Either would reduce performance.


