
CSCI 4320 November 9, 2005

Slide 1

Administrivia

• Homework 3 due date extended until Monday.

• Homework 4 (more problems on memory management) to be on Web by

Friday. Due following Monday.

• Courses next term:

CSCI 3294 (“Unix Power Tools”) will be similar to course last spring,

syllabus/notes from under “Old course materials” on my Web page.

CSCI 3394 (“Topics in Parallel Computing”) will be a follow-on to CSCI 3366.

Slide 2

Memory Management — Short Wrap-Up

• Goals: Sharing/partitioning of (real) memory among processes, program

relocation, memory protection, “virtual memory”.

• Different mechanisms for sharing/partitioning memory —

contiguous-allocation schemes, paging, segmentation. Which one is used

depends a lot on hardware (MMU).

• Different mechanisms for supporting virtual memory — swapping, paging. All

involve decision-making; for paging, “page replacement algorithms”.

• Review minute essays for 11/02 and 11/04.



CSCI 4320 November 9, 2005

Slide 3

I/O Management

• Operating system as resource manager — share I/O devices among

processes/users.

• Operating system as virtual machine — hide details of interaction with

devices, present a nicer interface to application programs.

Slide 4

I/O Hardware, Revisited

• First, a review of I/O hardware — simplified and somewhat abstract view,

mostly focusing on how low-level programs communicate with it.

• Many, many kinds of I/O devices — disks, tapes, mice, screens, etc., etc. Can

be useful to try to classify as “block devices” versus “character devices”.

• Many/most devices are connected to CPU via a “device controller” that

manages low-level details — so o/s talks to controller, not directly to device.

• Interaction between CPU and controllers is via registers in controller (write to

tell controller to do something, read to inquire about status), plus (sometimes)

data buffer.

Example — parallel port (connected to printers, etc.) has control register

(example bit — linefeed), status register (example bit — busy), data register

(one byte of data). These map onto the wires connecting the device to the

CPU.



CSCI 4320 November 9, 2005

Slide 5

Accessing Device Controller Registers

• Two basic approaches:

– Define “I/O ports” and access via special instructions.

– “Memory-mapped I/O” — map some (real) addresses to device-controller

registers.

Some systems use hybrid approach.

• Making either one work requires some hardware complexity, and there are

tradeoffs; memory-mapped I/O currently more common. (Notice implications

for writing device drivers — which scheme allows writing them without

assembly language?)

Slide 6

Direct Memory Access (DMA)

• When reading more than one byte (e.g., from disk), device controller typically

reads into internal buffer, checking for errors. How to then transfer to

memory?

• One way — CPU makes transfer, byte by byte.

• Another way — DMA controller makes transfer, having been given a target

memory location and a count.

• Which is better? consider speed of DMA versus speed of CPU, potential for

overlapping data transfer and computation.



CSCI 4320 November 9, 2005

Slide 7

Interrupts, Revisited

• When I/O device finishes its work, it generates interrupt, typically actually

signalling interrupt controller.

Interrupt controller signals CPU, with indication of which device caused

interrupt, or ignores interrupt (so device controller keeps trying) if interrupt

can’t be processed right now.

• Processing is now similar to what happens on traps (interrupts generated by

system calls, page faults, other errors):

Hardware locates proper interrupt handler (probably using interrupt vector),

saves critical info such as program counter, and transfers control (probably

switching into supervisor mode).

Interrupt handler saves other info needed to restart interrupted process, tells

interrupt controller when another interrupt can be handled, and performs

minimal processing of interrupt.

Slide 8

Interrupts, Revisited, A Bit More

• Notice how pipelining complicates things — restarting is much easier with

precise interrupts (all instructions before interrupted one complete, none past

interrupted one complete, etc.), but these are difficult to get with pipelined

processor.



CSCI 4320 November 9, 2005

Slide 9

Mechanics of I/O — Polling Versus Interrupts

• Programmed I/O: Program tells controller what to do and busy-waits until it

says it’s done.

Simple but potentially inefficient.

• Interrupt-driven I/O: Program tells controller what to do and then blocks.

While it’s blocked, other processes run. When requested operation is done,

controller generates interrupt, interrupt handler unblocks original program,

• I/O using DMA: Similar to interrupt-driven I/O, but transfer of data to memory

done by DMA controller, only one interrupt per block of data.

Slide 10

Goals of I/O Software

• Device independence — application programs shouldn’t need to know what

kind of device.

• Uniform naming — conventions that apply to all devices (e.g., Unix path

names, Windows drive letter and path name).

• Error handling — handle errors at as low a level as possible, retry/correct if

possible.

• “Synchronous interface to asynchronous operations.”

• Buffering.

• Device sharing / dedication.



CSCI 4320 November 9, 2005

Slide 11

Minute Essay

• None — sign in.


