
CSCI 4320 November 30, 2005

Slide 1

Administrivia

• (None.)

Slide 2

Filesystem Implementation — Recap

• Recall idea of filesystems — directory entry for a file points to something we

can use to find file’s blocks:

– First block and size of contiguous sequence.

– First block of linked list of blocks.

– Entry in FAT, which points to first block and holds linked lists.

– I-node, which contains list of blocks.

Directory entry can also contain file attributes, or they can be stored

elsewhere (e.g., in i-node).

• Notice how this is somewhat analogous to memory management — similar

tradeoffs.

• Must also manage free space. Issues include . . .



CSCI 4320 November 30, 2005

Slide 3

Blocksize

• “I/O software” can provide a device-independent blocksize (and translate to

cylinder/track/sector disk addresses).

• How big should blocks be?

– What if they’re really big?

– What if they’re really small?

– Usually compromise, also consider page size.

Slide 4

Managing Free Space — Free List

• One way to track which blocks are free — list of free blocks, kept on disk.

• How this works:

– Keep one block of this list in memory.

– Delete entries when files are created/expanded, add entries when files are

deleted.

– If block becomes empty/full, replace it.



CSCI 4320 November 30, 2005

Slide 5

Managing Free Space — Bitmap

• Another way to track which blocks are free — “bitmap” with one bit for each

block on disk, also kept on disk.

• How this works:

– Keep one block of map in memory.

– Modify entries as for free list.

• Usually requires less space.

Slide 6

Filesystem Reliability — Backups

• Why do backups? sometimes data is more valuable than physical medium,

and might need to

– Recover from disaster (rare).

– Recover from stupidity (less rare – hence “recycle bin” idea).

• Many issues involved — which files to back up, how to store backup media,

etc., etc. — see textbook.



CSCI 4320 November 30, 2005

Slide 7

Filesystem Reliability — Consistency Checks

• Can easily happen that true state of filesystem is represented by a

combination of what’s on disk and what’s in memory — a problem if shutdown

is not orderly.

• Solution is a “fix-up” program (Unix fsck, Windows scandisk). Kinds of

checking we can do:

– Consistency check: For each block, how many files does it appear in

(treating free list as a file)? If other than 1, problem — fix it as best we can.

– File consistency check: For each file, count number of links to it and

compare with number in its i-node. If not equal, change i-node.

– Etc., etc. — see text.

Slide 8

Filesystem Performance

• Access to disk data is much slower than access to memory — seek time plus

rotational delay plus transfer time.

• So, file systems include various optimizations . . .



CSCI 4320 November 30, 2005

Slide 9

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (Unix).

Slide 10

Improving Filesystem Performance — Block
Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)



CSCI 4320 November 30, 2005

Slide 11

Improving Filesystem Performance — Reducing Disk
Arm Motion

• Group blocks for each file together — easier if bitmap is used to keep track of

free space. If not grouped together — “disk fragmentation” may affect

performance.

• Place i-nodes so they’re fast to get to (and so maybe we can read an i-node

and associated file block together).

Slide 12

Disk Fragmentation

• Idea — if blocks that make up a file are (mostly) contiguous, faster to read

them all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that Unix and Linux filesystems typically don’t

become fragmented unless the disk is close to full.



CSCI 4320 November 30, 2005

Slide 13

Example Filesystem — Unix V7

• Filename restriction — each part of path name at most 14 characters.

• So, directory entry is just 14-byte name and i-node number.

• I-nodes are all stored in a contiguous array at the start of the file system (right

after boot block and a “superblock” containing additional parameters).

• What’s in each i-node? attributes (permission bits, numeric owner and group

ID, timestamps, links count) and list of blocks — last is pointer to more blocks.

• To find a file:

– Start with root directory — its i-node is in a known place.

– Scan directory for first part of path, get its i-node, read it, scan for next part

of path, etc.

– Relative path names are handled by including “.” and “..” in each directory,

so no special code needed.

Slide 14

Minute Essay

• None — sign in.


