
CSCI 4320 December 2, 2005

Slide 1

Administrivia

• Reminder: Homework 5 due Monday.

• Homework 6 on Web. Due next Friday.

Slide 2

Unix Filesystems — Concepts

• (This is summarized from chapter 10, which you can skim if you want more

details.)

• Single type of file — sequence of bytes. lseek allows random access.

• Single root directory. mount allows access to multiple physical devices.

• Links, hard or symbolic, to allow non-tree directory structure.

• Locks to control access to files/records.

• File descriptors for open files.

• “Pipes” — pseudofiles for connecting processes.

CSCI 4320 December 2, 2005

Slide 3

Unix Filesystems — Implementation Overview

• Superblock contains critical info — how many i-nodes, location of free list,

how many blocks, etc.

• After that? In early implementations, all i-nodes followed by all data blocks.

Later implementations (Berkeley FFS) use “cylinder groups”, each containing

superblock copy, i-nodes, and data blocks — for better performance, reliability.

• Directory entries fixed-size in early implementations, varying-size in later

ones.

• I-nodes contain file attributes, link count, list of (some) blocks, pointers to

indirect blocks.

• In memory — table of i-nodes for open files, table of file descriptors

(containing, e.g., info about position within file).

• NFS allows access to other systems’ disks.

Slide 4

Linux Filesystems — Implementation Overview

• Originally, MINIX filesystem only — similar to early Unix.

• Later, VFS (virtual filesystem) added as intermediate layer to support many

kinds.

• ext2/ext3 filesystems (ext3 is ext2 with addition of “journal” file and support for

journaling): Similar to FFS, but with a single blocksize, and “block groups”

rather than “cylinder groups”. Block group also includes bitmap for free space.

Attempts to allocate all space for file within block group (may account for less

fragmentation).

Superblock has bit that says whether filesystem is “clean” (no fsck needed

at boot time).

• /proc filesystem represents much system info.

CSCI 4320 December 2, 2005

Slide 5

Windows Filesystems — Concepts

• (This is summarized from chapter 11, which you can skim if you want more

details.)

• FAT filesystems as described in chapter 6. Designed for small disks and don’t

work very well for large ones. Also see description of how support for long

filenames was added.

• NTFS filesystems — new with Windows NT. Some basic concepts:

– Unicode filenames.

– File can consist of multiple “streams” (not just one as in Unix) —

generalization of Mac’s data fork / resource fork idea.

– Transparent compression and encryption.

Slide 6

Windows Filesystems — NTFS Implementation

• MFT (master file table) — analogous to i-nodes. One or more entries per

file/directory, plus some for system. Boot block points to start.

• For small files, data is right in MFT record. Otherwise contains list of

contiguous sequences of bytes.

CSCI 4320 December 2, 2005

Slide 7

Journaling Filesystems — Overview

• Recall — o/s sometimes doesn’t perform “write to disk” operations right away

(caching).

• One result is likely improved performance. Another is potential filesystem

inconsistency — operations such as “move a block from the free list to a file”

are no longer atomic.

• Idea of journaling filesystem — do something so we can regard updates to

filesystem as atomic.

• To say it another way — record changes-in-progress in log, when complete

mark them “done”.

Slide 8

Journaling Filesystems, Continued

• Can record “data”, “metadata” (directory info, free list, etc.), or both.

• “Undo logging” versus “redo logging”:

– Undo logging: First copy old data to log, then write new data (possibly

many blocks) to disk. If something goes wrong during update, “roll back”

by copying old data from log.

– Redo logging: First write new data to log (i.e., record changes we’re going

to make), then write new data to disk. If something goes wrong during

update, complete the update using data in log.

• A key benefit — after a system crash, we should only have to look at the log

for incomplete updates, rather than doing a full filesystem consistency check.

CSCI 4320 December 2, 2005

Slide 9

Journaling Filesystems Versus Log-Structured
Filesystems

• Log-structured filesystem — everything is written to log, and only to log.

Seems like an interesting idea, but tough to implement with good

performance.

• Journaling filesystem — log contains only recent and pending updates.

Slide 10

Security — Overview

• Goals:

– Data confidentiality — prevent exposure of data.

– Data integrity — prevent tampering.

– System availability — prevent DOS.

• What can go wrong:

– Deliberate intrusion — from casual snooping to “serious” intrusion.

– Accidental data loss — “acts of God”, hardware or software error, human

error.

CSCI 4320 December 2, 2005

Slide 11

User Authentication

• Based on “something the user knows” — e.g., passwords. Problems include

where to store them, whether they can be guessed, whether they can be

intercepted.

• Based on “something the user has” — e.g., key or smart card. Problems

include loss/theft, forgery.

• Based on “something the user is” – biometrics. Problems include

inaccuracy/spoofing.

Slide 12

Attacks From Within

• Trojan horses (and how this relates to $PATH).

• Login spoofing.

• Logic bombs and trap doors.

• Buffer overflows (and how this relates to, e.g, gets).

• And many more . . .

CSCI 4320 December 2, 2005

Slide 13

Designing a Secure System

• “Security through obscurity” isn’t very.

• Better to give too little access than too much — give programs/people as little

as will work.

• Security can’t be an add-on.

• “Keep it simple, stupid.”

Slide 14

Attacks From Outside

• Can categorize as viruses (programs that reproduce themselves when run)

and worms (self-replicating) — similar ideas, though.

• Many, many ways such code can get invoked — when legit programs are run,

at boot time, when file is opened by some applications (“macro viruses”), etc.

• Also many ways it can spread — once upon a time floppies were vector of

choice, now networks or e-mail. Common factors:

– Executable content from untrustworthy source.

– Human factors.

“Monoculture” makes it easier!

• Virus scanners can check all executables for known viruses (exact or fuzzy

matches), but hard/impossible to do this perfectly.

• Better to try to avoid viruses — some nice advice on p. 633.

CSCI 4320 December 2, 2005

Slide 15

Safe Execution of “Mobile” Code

• Is there a way to safely execute code from possibly untrustworthy source?

Maybe — approaches include sandboxing, interpretation, code signing.

• Example — Java’s designed-in security:

– At source level, very type-safe — no way to use void* pointers to

access random memory.

– When classes are loaded, “verifier” checks for potential security problems

(not generated by normal compilers, but could be done by hand).

– At runtime, security manager controls what library routines are called —

e.g., applets by default can’t do file operations, many kinds of network

access.

Slide 16

Trusted Systems

• Is it possible to write a secure O/S? Yes (says Tanenbaum).

• Why isn’t that done?

– People want to run existing code.

– People prefer (or are presumed to prefer) more features to more security.

CSCI 4320 December 2, 2005

Slide 17

Minute Essay

• Over the course of the semester I’ve told several “war stories” — tales of woe

that taught me (or someone) something. Do you have a favorite war story to

tell?

