
CSCI 4320 (Principles of Operating Systems), Fall 2006

Homework 2

Assigned: September 30, 2006.

Due: October 6, 2006, at 5pm. Not accepted past 12:30pm (class time) October 9 (except for
extra-credit problems).

Credit: 40 points.

1 Reading

Be sure you have read Chapter 2.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) If you were designing data structures for a process table and a thread table, say
whether you would include the following in the process table, the threads table, or both, and
briefly explain why.

• A place to save CPU registers.

• A place to save information about what memory is owned by the process or thread.

2. (5 points) When a computer is being designed, it is common to first simulate it using a
program that runs one (simulated) instruction at a time. Even computers with more than
one processor are simulated strictly sequentially like this. Is it possible for a race condition
to occur when, as in this situation, there are no truly simultaneous events? Why or why not?

3. (5 points) Consider a computer that does not have a test-and-set-lock (TSL) instruction,
but does have an instruction to swap the contents of a register and a memory word in a single
indivisible action. Use such an instruction (call it SWAP) to write a routine enter region like
the one found in Figure 2-22 in the textbook, or explain why this is impossible.

4. (5 points) Restrooms are usually designated as men-only or women-only, but this requires
having two restrooms if everyone is to be accommodated. A less expensive approach consistent
with cultural norms in the U.S. would be to have one restroom with a sign on the door that
indicates its current state — empty, in use by at least one woman, or in use by at least one
man. If it is empty, either a man or a women may enter; if it is occupied, a person of the same
sex may enter, but a person of the opposite sex must wait until it is empty. Write pseudocode
for four functions to implement this approach: woman enter, man enter, woman leave, and
man leave, to be used by the following pseudocode:

1



CSCI 4320 Homework 2 Fall 2006

/* woman process */

while (TRUE) {

woman_enter();

use_restroom();

woman_leave();

do_other_stuff();

}

/* man process */

while (TRUE) {

man_enter();

use_restroom();

man_leave();

do_other_stuff();

}

You can use any of the synchronization mechanisms we have talked about (shared variables,
semaphores, monitors, or even message passing). (If you’d rather write real code, do optional
programming problem 2 instead.)

5. (5 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time. Their estimated running times (in minutes) and priorities are as follows, with
5 indicating the highest priority:

job running time priority

A 10 3

B 6 5

C 2 2

D 4 1

E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e.,
they do not block). (Before doing this by hand, decide whether you want to do optional
programming problem 3.)

• First-come, first-served (run them in alphabetic order by job name).

• Shortest job first.

• Round robin, using a time quantum of 1 minute.

• Round robin, using a time quantum of 2 minutes.

• Priority scheduling.

6. (5 points) Recall that some proposed solutions to the mutual-exclusion problem (e.g., Peter-
son’s algorithm) involve busy waiting. Do such solutions work if priority scheduling is being
used and one of the processes involved has higher priority than the other(s)? Why or why
not? How about if round-robin scheduling is being used? Why or why not? Notice that
a process can be interrupted while in its critical region; if that happens, it is considered to
still be in its critical region, and other processes wanting to be in their critical regions are
supposed to busy-wait.

2



CSCI 4320 Homework 2 Fall 2006

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 4320 homework 2”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Fedora Core 5 Linux machines, so you should probably make sure they work in that environment
before turning them in.

1. (10 points) The starting point for this problem is a simple implementation of the mutual
exclusion problem in C with POSIX threads m-e-problem.c1. Each thread executes a loop
similar to the one presented in class for this problem, except that:

• Rather than looping forever, each thread makes a finite number of trips through the
loop.

• The critical region is represented by code to print some messages and sleep for a random
interval.

• The non-critical region is represented by code to sleep for a random interval.

Currently no attempt is made to ensure that only one thread at a time is in its critical region,
and if you run it you will see that in fact it frequently happens that all the threads are in
their critical region at the same time. Your mission is to correct this.

Start by compiling the program, running it, and observing its behavior. To compile with gcc,
you will need the extra flag -pthread, e.g.

gcc -o m-e-problem -pthread m-e-problem.c

and you will need file timer.h2. The program requires several command-line arguments,
described in comments at the top of the code. (If you have trouble remembering the order,
notice that the program prints a meant-to-be-helpful usage message if run with no arguments.)

You are to produce two corrected versions of this program:

• The first version should use shared variables only (declare them volatile so the compiler
knows that it should access them in memory every time rather than keeping them in
registers) and one of the following algorithms:

– Strict alternation, extended to work for an arbitrary number of threads. (No, this
isn’t a perfect solution, but it does enforce the “one at a time” condition.)

– Peterson’s algorithm, for two threads only. (For extra credit, research and implement
a variation that works for more than two threads. Cite a source for your solution
if appropriate — e.g., “I found pseudocode for this solution at the following Web
site.” Or look up and implement Leslie Lamport’s bakery algorithm.)

• The second version should use one of the following sets of library functions:

– The POSIX threads mutex functions. man pthread mutex init is a good starting
point for finding out about these functions.

1http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2006fall/Homeworks/HW02/Problems/

m-e-problem.c
2http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2006fall/Homeworks/HW02/Problems/timer.h

3



CSCI 4320 Homework 2 Fall 2006

– The POSIX threads semaphore functions. man sem init is a good starting point
for finding out about these functions.

Places in the program that should change are marked with “TODO” comments. You should
not need to add much code. Confirm that your two improved versions behave as expected,
i.e., when one thread starts its critical region no other thread can start its critical region until
the first one finishes.

2. (Optional — up to 10 extra-credit points) Write a program to test your solution to prob-
lem 4. If you want to do this using C and POSIX threads, you could start with the code
for programming problem 1. Or you could rewrite in Java and use either its monitor-
based synchronization (synchronized methods/blocks plus wait, notify, and notifyAll)
or features of the newish java.util.concurrent library package (which has, among many
other things, a Semaphore library class). You can find some simple examples of multi-
threaded Java programs on the “Sample programs” page for my parallel programming class:
http://www.cs.trinity.edu/ bmassing/CS3366/SamplePrograms/3. The bounded buffer ex-
ample may be useful if you want to use monitor-based synchronization.

3. (Optional — up to 10 extra-credit points) The starting point for this problem is a program
scheduler.cpp4 that simulates execution of a scheduler, i.e., generates solutions to problem 5.
Currently the program simulates only the FCFS algorithm. Your mission is to make it
simulate one or more of the other algorithms mentioned in problem 5. (Feel free to rewrite
anything about this program, including starting over in a language of your choice. Just
remember that the program has to run on one of the department Linux machines, and it
needs to accept input from standard input — i.e., no GUIs, Web-based programs, etc. The
latter requirement is to make it easier for me to test your code, at least partially automatically.
If you make changes to the format of the input — and I prefer that you don’t — change the
comments so they describe the changed requirements.)

3http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/
4http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2006fall/Homeworks/HW02/Problems/scheduler.

cpp

4


