CSCI 4320 August 28, 2006

Administrivia

e A reminder for graduating seniors, from Dr. Myers: The theory class
(CSCI 3320) will not be offered next spring, so if you haven't already taken (or
signed up for, this semester) the course, you might want to add it!

Slide 1
Why Review History?
e To understand roots/development of current operating systems.
e As a way of getting many perspectives on “what do we want an o/s to do, and
how do we make it do that?”
e Because history is intrinsically interesting? Try to imagine what using some of
Slide 2

those early machines might have been like.




CSCI 4320

August 28, 2006

Slide 3

The Early Days (1940s)

o Programming done by making physical connections on a plugboard (!).

e Better than no computer at all, but tedious and inefficient!

® (See “Useful links” page for a picture of the ENIAC.)

Slide 4

The Early Days (1940s — 1950s)

e Key improvements: stored-program concept, punch cards.
o Programming done by encoding machine language into cards.

e Program included code to start up computer, read rest of program into
memory, do all input and output, etc. (no operating system).

e One program at a time, machine operated by programmer.

e Better, but still tedious and inefficient!




CSCI 4320 August 28, 2006

The Early Days (1950s)

e Key improvements: assemblers and compilers, libraries of commonly-used
code, specialists to run machine (operators).

e Programming done in assembly language (or early high-level language),

punched into cards.

Slide 5 e Separate steps to translate to machine language, execute.
e One program at a time, but machine operated by specialist.
e Less tedious, less inefficient.

e Still cumbersome for programmers, CPU idle between steps.

Batch Systems (1950s)

e Key improvement: “batch” idea — automate transitions between steps
(translate program, execute, translate next program, etc.).

o How to make this work? separate input by “control cards”, write primitive
operating system to interpret them, manage transitions.

Slide 6 e Less inefficient, but 1/0 devices slow, so CPU idle a lot — still one program at

atime.

e Still cumbersome for programmers — punch program into cards, give to

operator, wait for output.




CSCI 4320 August 28, 2006

4 . . )
Multiprogramming Systems (1960s — ?)

e Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

o How to make this work? requires much more complex operating system —
must share memory and I/O devices among programs, switch between them,

Slide 7 etc.

e Efficient use of hardware.
e Still cumbersome for programmers — no real changes here.

e (See “Useful links” page for a picture of an IBM mainframe, peripherals.)

Timesharing Systems (1960s — ?)

e Key improvements: “interactive” users (using text terminals), utility programs
to support them (shells, text editors, etc.).

How to make this work? like multiprogramming, but now programs sharing

memory are interactive users wanting fast response.

Slide 8

Efficient use of hardware.

Much less cumbersome for program development!




CSCI 4320 August 28, 2006

Personal Computers (1980s — ?)

e Similar evolution of operating systems — initially very simple, gradually

becoming more complex/capable.
e Features from mainframes adopted as hardware permitted.

o A key difference — emphasis on user convenience rather than efficient use of

Slide 9 hardware.
Evolution of Operating Systems, Recap
e Increasing hardware capability.
e Increasing o/s functionality and complexity — from simple program loader to
complex multitasking system.
e Parallels between evolution of mainframe o/s and PC ofs.
Slide 10




CSCI 4320 August 28, 2006

4 )

o What's the most primitive and/or cumbersome system you've personally used

to write programs?

Slide 11




