
CSCI 4320 September 1, 2006

Slide 1

Administrivia

• Open lab hours announced via e-mail. Updated office hours posted on my

Web page, etc.

• Homework 1 on the Web. Due next Friday. One programming problem, so

start early.

Slide 2

Minute Essay From Last Lecture(s)

• 8/28 minute essay — a diverse bunch of responses, including:

– assembly language (MIPS, RISC) in CSCI 1321; also J

– programming under Windows 98

– BASIC, QBASIC

– programming using textpad, notepad, edlin, vi

– TI calculator

• 8/30 minute essay — see last slide of online notes.



CSCI 4320 September 1, 2006

Slide 3

Overview of Hardware, Continued

• Simplified view of hardware (as it appears to programmers) — processor(s),

memory, I/O devices, bus.

• Next few sections talk about each component — what it does (from user’s

point of view) and low-level interface to software.

Slide 4

Processors — Recap

• Basics — instruction set (primitive operations), basic fetch/decode/execute

cycle, registers.

• Additional features that help in writing effective operating systems — interrupt

mechanism, dual-mode operation and privileged instructions, memory

protection, timer.



CSCI 4320 September 1, 2006

Slide 5

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:

registers, cache, RAM, magnetic disk, magnetic tape. (See picture, p. 24.)

• Note also — some types volatile, some non-volatile.

Slide 6

Program Relocation

• At the machine-instruction level, references to memory are in terms of an

absolute number. Compilers/assemblers can generate these only by making

assumption about where program will reside in memory.

• In the very early days, programs started at 0, so no problem. Now they hardly

ever do, so we need a way to relocate programs — when loaded, or “on the

fly”.

• “On the fly” relocation uses MMU (memory management unit) — which can

provide both program relocation and memory protection.

Logically between CPU and memory, physically usually part of CPU.

A simple scheme — base and limit registers (described in text). When do

values in them need to change?



CSCI 4320 September 1, 2006

Slide 7

I/O Devices

• What they provide (from the user’s perspective):

– Non-volatile storage (disks, tapes).

– Connections to outside world (keyboards, microphones, screens, etc.,

etc.).

• Distance between hardware and “virtual machine” is large here, so usually

think in terms of:

– Layers of s/w abstraction (as with other parts of o/s).

– Layers of h/w abstraction too: most devices attached via controller, which

provides a h/w layer of abstraction (e.g., “IDE controller”).

Slide 8

I/O Basics

• CPU communicates with device controller by reading/writing device registers;

device controller communicates with device.

• Memory-mapped I/O versus I/O instructions.

• Polling versus interrupts.

• Functionality for a particular device packaged as “device driver”.

• I/O in application programs — make system call.

• Recap: application program ↔ system call (to o/s) ↔ device driver ↔ device

controller ↔ device



CSCI 4320 September 1, 2006

Slide 9

Operating System Services

• Process management.

• Memory management.

• I/O subsystem.

• File systems.

• Security.

• Shell (discussed last time).

Slide 10

Process Management

• “Process” abstraction to represent one of a collection of “things happening at

the same time”.

A working definition — “program in execution” (program code plus associated

variables, sequence of states tracking progress through code and changes in

variables).

• “Concurrent” execution via interleaving of actions.

In effect, each process has a “virtual CPU”, with the actual CPU repeatedly

suspending one process to work on another (“context switch”).

• O/s must provide a way to manage this, including ways to create processes,

allow/force them to terminate, communicate among them (e.g., to

coordinate/synchronize).



CSCI 4320 September 1, 2006

Slide 11

Memory Management

• Managing physical memory:

– How to divide it up among processes/programs/users — each has an

“address space” of memory it can access.

– How to protect each process’s memory from other processes (requires h/w

support, but managed by o/s).

• Managing address spaces (virtual memory):

– Originally, address space limited by size of physical memory.

– “Virtual memory” allows bigger address spaces, by shuffling data between

disk and physical memory.

Slide 12

I/O Subsystem

• Encapsulates messy low-level details.

• Allows sharing of I/O devices among programs/users.



CSCI 4320 September 1, 2006

Slide 13

File Systems

• “File system” abstraction, including:

– “File” abstraction — collection of related information, possibly with

associated ownership, permissions, timestamps, etc.

– “Directory” abstraction.

– “Path names” — absolute and relative.

– “Opening a file” — connecting program to file (check permissions, etc.,

return “file descriptor”).

• Additional Unix ideas/terms:

– Mounting filesystems.

– Special files — idea is to treat other devices (e.g., printers) like files.

– Pipes — connections between processes that can be treated like file.

Slide 14

Security

• Protect users/applications from each other.

• Protect users/applications from the outside world.



CSCI 4320 September 1, 2006

Slide 15

Minute Essay

• We’ve talked a lot about what benefits an operating system provides. Can you

think of situations, though, in which you wouldn’t want one?

Slide 16

Minute Essay Answer

• One possibility: If you only ever want to run one application, it might be

simpler and more efficient to just build into it whatever parts of normal o/s

functionality are needed.


