
CSCI 4320 September 15, 2006

Slide 1

Administrivia

• (None.)

Slide 2

Minute Essay From Last Lecture

• (Review answer from online notes.)



CSCI 4320 September 15, 2006

Slide 3

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?

Slide 4

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — a list of open files, e.g.

• Then you’d collect these into a table or something — “process control table”,

and individual data structures are “entries in the process control table” or

“process control blocks”.



CSCI 4320 September 15, 2006

Slide 5

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.

Slide 6

Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Implementation involves data structures similar to process table.

• Advantages / disadvantages (compared to processes)?



CSCI 4320 September 15, 2006

Slide 7

Threads, Continued

• Advantages: threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages: sharing data has its hazards (more about this later).

Slide 8

Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” (next two

slides).

• Various hybrid schemes also possible.



CSCI 4320 September 15, 2006

Slide 9

Implementing Threads “In User Space”

• Basic idea — operating system thinks it’s managing single-threaded

processes, all the work of managing multiple threads happens via library calls

within each process.

• Advantages / disadvantages?

Slide 10

Implementing Threads “In User Space”, Continued

• Advantages: fewer system calls, hence probably more efficient.

• Disadvantages:

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible.

– Using multiple CPUs is difficult/impossible.



CSCI 4320 September 15, 2006

Slide 11

Implementing Threads “In Kernel Space”

• Basic idea — operating system is involved in managing threads, the work of

managing multiple threads happens via system calls (rather than user-level

library calls).

• Advantages / disadvantages?

Slide 12

Implementing Threads “In Kernel Space”, Continued

• Advantages: avoids the difficulties of implementing in user space.

• Disadvantages: probably less efficient.



CSCI 4320 September 15, 2006

Slide 13

Example Implementations

• Unix systems vary as to which they use (see chapter 10 for more info). Until

fairly recently Linux did kernel-space threading, but allegedly with some

tweaks to make it more efficient. There have been some changes in the latest

versions . . .

• Windows NT/2000 apparently is such that all processes have at least one

thread, and the basic scheme is either kernel-space or a hybrid (see

chapter 11 for more info).

Slide 14

Minute Essay

• If you were doing an object-oriented design for an operating system, you

might have a Process class and a Thread class. How might you think of

relating them? (class/subclass? something else?)


