

can be done much more formally and rigorously.

Review — Peterson's Algorithm
(Review use of invariant.)
Worth noting that whether it works on real hardware may depend on whether values "written" to memory are actually written right away or cached.

Slide 3

Slide 4

Slide 7

	Bounded Buffer	Problem — Solution
	Shared variables:	
	<pre>buffer B(N); // emp</pre>	ty, capacity N
	<pre>semaphore mutex(1);</pre>	
	<pre>semaphore empty(N);</pre>	
	<pre>semaphore full(0);</pre>	
Slide 12	Pseudocode for producer:	Pseudocode for consumer:
	while (true) {	while (true) {
	item = generate();	down(full);
	down(empty);	down(mutex);
	down(mutex);	item = get(B);
	<pre>put(item, B);</pre>	up(mutex);
	up(mutex);	up(empty);
	up(full);	use(item);
	}	}
		-

Slide 13

Slide 14

Minute Essay Answer • It's a pun. The idea is roughly that if you never have a situation in which you've attempted more "down" operations than "up" operations, you didn't need a semaphore. (Or that's what I think it means. The author might have another idea!)