
CSCI 4320 September 22, 2006

Slide 1

Administrivia

• (None?)

Slide 2

Minute Essay From Last Lecture

• (Review question.)

• “Expected” answer: Caching may complicate things, especially with multiple

CPUs.

• Many interesting answers.

Aside: Registers, cache, memory, disk form a “memory hierarchy” but are

distinct.



CSCI 4320 September 22, 2006

Slide 3

Review — Invariants and Concurrent Algorithms

• Last time we talked about notion of “invariant” being helpful in thinking about

concurrent algorithms.

• Loosely speaking — “something about the program that’s always true”.

More carefully: a statement about program variables/state such that:

– It’s true initially.

– If it’s true before any statement of the program, it’s still true afterwards.

Verify by first looking at initial state, then at everything in the program that

changes variables/states mentioned in the invariant.

• Goal is to come up with an invariant that’s not too difficult to verify by looking

at the code and implies the property you want — as with loop invariants as

(maybe) discussed in CSCI 1323.

• We’re doing this informally (not very rigorously, with some hand-waving), but it

can be done much more formally and rigorously.

Slide 4

Review — Peterson’s Algorithm

• (Review use of invariant.)

• Worth noting that whether it works on real hardware may depend on whether

values “written” to memory are actually written right away or cached.



CSCI 4320 September 22, 2006

Slide 5

Semaphores

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?

Slide 6

Mutual Exclusion Using Semaphores

• Shared variables:
semaphore S(1);

Pseudocode for each process:
while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Invariant: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”



CSCI 4320 September 22, 2006

Slide 7

Mutual Exclusion Using Semaphores, Continued

• Invariant again: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”

Obvious (?) that this means first requirement is met. Can check that others

are met too.

Slide 8

Bounded Buffer Problem

• (Example of slightly more complicated synchronization needs.)

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).



CSCI 4320 September 22, 2006

Slide 9

Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

Slide 10

Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.



CSCI 4320 September 22, 2006

Slide 11

Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?

Slide 12

Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}



CSCI 4320 September 22, 2006

Slide 13

Minute Essay

• Alleged joke (from some random Usenet person):

A man’s P should exceed his V else what’s a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)

Slide 14

Minute Essay Answer

• It’s a pun. The idea is roughly that if you never have a situation in which

you’ve attempted more “down” operations than “up” operations, you didn’t

need a semaphore. (Or that’s what I think it means. The author might have

another idea!)


