
CSCI 4320 September 25, 2006

Slide 1

Administrivia

• Next homework coming soon — should be on Web by Wednesday, due about

a week later.

Slide 2

Semaphores — Recap

• Semaphore ADT:

– Value — non-negative integer.

– Two operations, up and down; both atomic.

• Last week — solutions using semaphores for mutual exclusion problem,

bounded buffer problem.



CSCI 4320 September 25, 2006

Slide 3

Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.

Slide 4

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .



CSCI 4320 September 25, 2006

Slide 5

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr()? next slide.

Slide 6

Implementing Semaphores, Continued

• Revised functions to enter, leave critical region:
enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

leave_cr:

store 0 in lock

return



CSCI 4320 September 25, 2006

Slide 7

Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”).

Slide 8

Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}



CSCI 4320 September 25, 2006

Slide 9

Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

• Procedures:

insert(item itm) {

if (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

if (count == 0)

wait(empty);

itm = get(B);

count -= 1;

signal(full);

}

Slide 10

Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors:

– Data for monitor is instance variables (data for class).

– Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

– wait, notify, notifyAll methods.

– No condition variables, but above methods provide more or less equivalent

functionality.



CSCI 4320 September 25, 2006

Slide 11

Message Passing

• Previous synchronization mechanisms all involve shared variables; okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.

Slide 12

Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.



CSCI 4320 September 25, 2006

Slide 13

Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.

(Why would you want to do this? programming model is in some ways

simpler, doesn’t require memory shared among processes.)

Slide 14

Mutual Exclusion, Revisited

• How to solve mutual exclusion problem with message passing?

• Several approaches based on idea of a single “token”; process must “have

the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in

its critical region it has the token.”)

• One such approach — a “master process” that all other processes

communicate with; simple but can be a bottleneck.

• Another such approach — ring of “server processes”, one for each “client

process”, token circulates.



CSCI 4320 September 25, 2006

Slide 15

Mutual Exclusion With Message-Passing (1)

• Idea — have “master process” (centralized control).

Pseudocode for client process:
while (true) {

send(master, "request");

receive(master, &msg); // assume "token"

do_cr();

send(master, "token");

do_non_cr();

}

Pseudocode for master process:
bool have_token = true;

queue waitQ;

while (true) {

receive(ANY, &msg);

if (msg == "request") {

if (have_token) {

send(msg.sender, "token");

have_token = false;

}

else

enqueue(sender, waitQ);

}

else { // assume "token"

if (empty(waitQ))

have_token = true;

else {

p = dequeue(waitQ);

send(p, "token");

}

}

}

Slide 16

Mutual Exclusion With Message-Passing (2)

• Idea — ring of servers, one for each client.

Pseudocode for client process:
while (true) {

send(my_server, "request");

receive(my_server, &msg); // assume "token"

do_cr();

send(my_server, "token");

do_non_cr();

}

Pseudocode for server process:
bool need_token = false;

if (my_id == first)

send(next_server, "token");

while (true) {

receive(ANY, &msg);

if (msg == "request")

need_token = true;

else { // assume "token"

if (msg.sender == my_client) {

need_token = false;

send(next_server, "token");

}

else if (need_token)

send(my_client, "token");

else

send(next_server, "token");

}

}



CSCI 4320 September 25, 2006

Slide 17

Minute Essay

• Have you written programs using any of these mechanisms, or others? (e.g.,

multithreaded Java programs, message-passing programs).


