
CSCI 4320 November 3, 2006

Slide 1

Administrivia

• Reminder: Homework 3 due Monday.

Slide 2

Minute Essay From Last Lecture

• So, the whole discussion of memory management becomes moot if we get

really big fast memory? Not entirely. Maybe virtual memory isn’t needed any

more, though.

• What does the Mac operating system do? OS X is supposedly BSD Unix

“under the hood”, so something Unix-like probably. (Something to find out.)



CSCI 4320 November 3, 2006

Slide 3

I/O Management

• Operating system as resource manager — share I/O devices among

processes/users.

• Operating system as virtual machine — hide details of interaction with

devices, present a nicer interface to application programs.

Slide 4

I/O Hardware, Revisited

• First, a review of I/O hardware — simplified and somewhat abstract view,

mostly focusing on how low-level programs communicate with it.

• Many, many kinds of I/O devices — disks, tapes, mice, screens, etc., etc. Can

be useful to try to classify as “block devices” versus “character devices”.

• Many/most devices are connected to CPU via a “device controller” that

manages low-level details — so o/s talks to controller, not directly to device.

• Interaction between CPU and controllers is via registers in controller (write to

tell controller to do something, read to inquire about status), plus (sometimes)

data buffer.

Example — parallel port (connected to printers, etc.) has control register

(example bit — linefeed), status register (example bit — busy), data register

(one byte of data). These map onto the wires connecting the device to the

CPU.



CSCI 4320 November 3, 2006

Slide 5

Accessing Device Controller Registers

• Two basic approaches:

– Define “I/O ports” and access via special instructions.

– “Memory-mapped I/O” — map some (real) addresses to device-controller

registers.

Some systems use hybrid approach.

• Making either one work requires some hardware complexity, and there are

tradeoffs; memory-mapped I/O currently more common. (Notice implications

for writing device drivers — which scheme allows writing them without

assembly language?)

Slide 6

Direct Memory Access (DMA)

• When reading more than one byte (e.g., from disk), device controller typically

reads into internal buffer, checking for errors. How to then transfer to

memory?

• One way — CPU makes transfer, byte by byte.

• Another way — DMA controller makes transfer, having been given a target

memory location and a count.

• Which is better? consider speed of DMA versus speed of CPU, potential for

overlapping data transfer and computation. DMA is extra hardware and could

be slower than CPU, but would appear to offer potential to overlap transfer

and computation.



CSCI 4320 November 3, 2006

Slide 7

Interrupts, Revisited

• When I/O device finishes its work, it generates interrupt, typically actually

signalling interrupt controller.

Interrupt controller signals CPU, with indication of which device caused

interrupt, or ignores interrupt (so device controller keeps trying) if interrupt

can’t be processed right now.

• Processing is now similar to what happens on traps (interrupts generated by

system calls, page faults, other errors):

Hardware locates proper interrupt handler (probably using interrupt vector),

saves critical info such as program counter, and transfers control (probably

switching into supervisor mode).

Interrupt handler saves other info needed to restart interrupted process, tells

interrupt controller when another interrupt can be handled, and performs

minimal processing of interrupt.

Slide 8

Interrupts, Revisited, A Bit More

• Notice that pipelining complicates things — restarting is much easier with

precise interrupts (all instructions before interrupted one complete, none past

interrupted one complete, etc.), but these are difficult to get with pipelined

processor.



CSCI 4320 November 3, 2006

Slide 9

Mechanics of I/O — Polling Versus Interrupts

• Programmed I/O: Program tells controller what to do and busy-waits until it

says it’s done.

Simple but potentially inefficient.

• Interrupt-driven I/O: Program tells controller what to do and then blocks.

While it’s blocked, other processes run. When requested operation is done,

controller generates interrupt, interrupt handler unblocks original program,

• I/O using DMA: Similar to interrupt-driven I/O, but transfer of data to memory

done by DMA controller, only one interrupt per block of data.

Slide 10

Minute Essay

• None — sign in.


