
CSCI 4320 November 10, 2006

Slide 1

Administrivia

• Homework 4 (problems about I/O) will be on the Web soon, to be due a week

from Monday.

Slide 2

Disks — Hardware

• Magnetic disks:

– Cylinder/head/sector addressing may or may not reflect physical geometry

— controller should handle this.

– Controller may be able to manage multiple disks, perform overlapping

seeks.

• RAID (Redundant Array of Inexpensive/Independent Disks):

– Basic idea is to replace single disk and disk controller with “array” of disks

and RAID controller.

– Two possible payoffs — redundancy and performance (parallelism).

– Six “levels” (configurations) defined. Read all about it in textbook if

interested.

• Optical disks — CD, CD-R, CD-RW, DVD. Okay to skim details!



CSCI 4320 November 10, 2006

Slide 3

Disk Formatting

• Low-level formatting — each track filled with sectors (preamble, data, ECC

bits).

• Higher-level formatting — master boot record, partitions (logical disks),

partition table. Master boot record points to boot block in some partition.

Partition table gives info about partitions (size, location, use).

• Partition formatting — boot block, blocks for file system (more about that in

next chapter).

Slide 4

Disk Arm Scheduling Algorithms

• A little more about hardware: Time to read a block from disk depends on seek

time, rotational delay, and data transfer time. First two usually dominate.

• Earlier we said that typical device driver for disk maintains a queue of pending

requests (one per disk, if controller is managing more than one). What order

to process them in? several “disk arm scheduling algorithms”:

– FCFS (first come, first served).

– SSF (shortest seek first).

– Elevator.

How do they compare with regard to ease of implementation, efficiency?



CSCI 4320 November 10, 2006

Slide 5

Disk Error Handling

• Almost all disks have sectors with defects. Some controllers can recognize

them (repeated failures) and avoid them; if not, o/s (device driver) must do

this.

• Other kinds of errors also possible, e.g., failure to correctly position read/write

head; also must be handled either by controller (if possible) or o/s.

Slide 6

Other I/O-Related Topics

• Power management significant — some devices have “sleeping” and

“hibernating” states, o/s can try to determine when it would make sense to

use them. Example — screen blanking.



CSCI 4320 November 10, 2006

Slide 7

I/O in Unix/Linux

• Access to devices provided by special files (/dev/*), to provide uniform

interface for callers. Two categories, block and character. Each defines

interface (set of functions) to device driver. Major device number used to

locate specific function.

• For block devices, buffer cache contains blocks recently/frequently used. (See

figure on p. 729.)

• For character devices, optional line-discipline layer provides some of what we

described for text-terminal keyboard driver. (See figure on p. 729.)

• Streams provide additional layer of abstraction for callers — can interface to

files, terminals, etc. (This is what you access with *scanf, *printf.)

(Aside: How do you get the man page for the printf function? (man

printf gives you something else.) Can be several man pages for given

name, in different “sections”. Get all of them with man -a.)

Slide 8

I/O in Windows

• Hardware Abstraction Layer (HAL) attempts to insulate rest of o/s from some

low-level details — e.g., I/O using ports versus memory-mapped I/O. (See

figure p. 779.)

• Standard interface to device drivers — Windows Driver Model. Drivers are

passed I/O Request Packet objects. (See figure on p. 829.)

• Interesting comparison of o/s sizes on p. 771.



CSCI 4320 November 10, 2006

Slide 9

Minute Essay

• This wraps up what I plan to say about I/O (though not about filesystems,

which we’ll talk about next week). Anything else you’d like to hear about?


