CSCI 4320 (Principles of Operating Systems), Fall 2007

Homework 3

Assigned: September 26, 2007.
Due: October 8, 2007, at classtime. Not accepted late.

Credit: 30 points.

1 Reading

Be sure you have read Chapter 2, sections 4 through 7, and Chapter 3.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time. Their estimated running times (in minutes) and priorities are as follows, with
5 indicating the highest priority:

job | running time | priority
A 10 3
B 6 5
C 2 2
D 4 1
E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e., they
do not block). (Before doing this by hand, decide how much of programming problem 1 you
want to do.

e First-come, first-served (run them in alphabetic order by job name).
Shortest job first.

Round robin, using a time quantum of 1 minute.

Round robin, using a time quantum of 2 minutes.

Priority scheduling.

2. (5 points) Recall that some proposed solutions to the mutual-exclusion problem (e.g., Peter-
son’s algorithm) involve busy waiting. Do such solutions work if priority scheduling is being
used and one of the processes involved has higher priority than the other(s)? Why or why
not? How about if round-robin scheduling is being used? Why or why not? Notice that
a process can be interrupted while in its critical region; if that happens, it is considered to
still be in its critical region, and other processes wanting to be in their critical regions are
supposed to busy-wait.

CSCI 4320 Homework 3 Fall 2007

3. (5 points) Suppose that a scheduling algorithm favors processes that have used the least

amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes?

(5 points) Suppose you are designing an electronic funds transfer system, in which there will
be many identical processes that work as follows: Each process accepts as input an amount
of money to transfer, the account to be credited, and the account to be debited. It then locks
both accounts (one at a time), transfers the money, and releases the locks when done. Many
of these processes could be running at the same time. Clearly a design goal for this system
is that two transfers that affect the same account should not take place at the same time,
since that might lead to race conditions. However, no problems should arise from doing a
transfer from, say, account A to account B at the same time as a transfer from account C' to
account D, so another design goal is for this to be possible. The available locking mechanism
is fairly primitive: It acquires locks one at a time, and there is no provision for testing a lock
to find out whether it is available (you must simply attempt to acquire it, and wait if it’s not
available). A friend proposes a simple scheme for locking the accounts: First lock the account
to be credited; then lock the account to be debited. Can this scheme lead to deadlock? If
you think it cannot, briefly explain why not. If you think it can, first give an example of a
possible deadlock situation, and then design a scheme that avoids deadlocks, meets the stated
design goals, and uses only the locking mechanism just described.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 4320 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Fedora 7 Linux machines, so you should probably make sure they work in that environment before
turning them in.

(10 points) The starting point for this problem is a program scheduler.cpp! that simulates
execution of a scheduler, i.e., generates solutions to problem 1. Currently the program simu-
lates only the FCFS algorithm. Your mission is to make it simulate one or more of the other
algorithms mentioned in problem 1. You will get full credit for simulating one algorithm,
extra points for simulating additional algorithms.

Feel free to rewrite anything about this program, including starting over in a language of
your choice. Just remember that the program has to run on one of the department Linux
machines, and it needs to accept input from standard input — i.e., no GUIs, Web-based
programs, etc. The latter requirement is to make it easier for me to test your code, at least
partially automatically. If you make changes to the format of the input — and I prefer that
you don’t — change the comments so they describe the changed requirements.

"http://www.cs.trinity.edu/ bmassing/Classes/CS4320_2007fall/Homeworks/HWO3/Problems/scheduler.

Cpp

