
CSCI 4320 (Principles of Operating Systems), Fall 2007

Homework 4

Assigned: October 24, 2007.

Due: November 2, 2007, at 5pm.

Credit: 60 points.

1 Reading

Be sure you have read Chapter 4.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Consider a computer system with 10,000 bytes of memory whose MMU uses the
simple base register / limit register scheme described in chapter 1 of the textbook (pages 26–
27), and suppose memory is currently allocated as follows:

• Locations 0–1999 are reserved for use by the operating system.

• Process A occupies locations 4000–5999.

• Process B occupies locations 6000–8999.

• Other locations are free.

Answer the following questions about this system.

(a) What value would need to be loaded into the base register if we performed a context
switch to restart process A?

(b) What memory locations would correspond to the following virtual (program) addresses
in process A?

• 100

• 4000

2. (5 points) Now consider a computer system using paging to manage memory; suppose it
has 64K (216) bytes of memory and a page size of 4K bytes, and suppose the page table for
some process (call it process A) looks like the following.

1



CSCI 4320 Homework 4 Fall 2007

Page number Present/absent bit Page frame number

0 1 5

1 1 4

2 1 2

3 0 ?

4 0 ?

5 1 7

6 0 ?

. . . 0 ?

15 0 ?

Answer the following questions about this system.

(a) What memory locations would correspond to the following virtual (program) addresses
for process A? (Here, the addresses will be given in hexadecimal, i.e., base 16, to make
the needed calculations simpler. Your answers should also be in hexadecimal. Notice
that if you find yourself converting between decimal and hexadecimal, you are doing the
problem the hard way. Stop and think whether there is an easier way.)

• 0x1420

• 0x2ff0

• 0x4008

• 0x0010

(b) If we want to guarantee that this system could support 16 concurrent processes and give
each an address space of 64K bytes, how much disk space would be required for storing
out-of-memory pages? Explain your answer (i.e., show/explain how you calculated it).
Assume that the first page frame is always in use by the operating system and will never
be paged out. You may want to make additional assumptions; if you do, say what they
are.

3. (10 points) Now consider a much bigger computer system, one in which addresses (both
physical and virtual) are 32 bits and the system has 232 bytes of memory. (You can express
your answers in terms of powers of 2, if that is convenient.) Answer the following questions
about this system.

(a) What is the maximum size in bytes of a process’s address space on this system?

(b) Is there a logical limit to how much main memory this system can make use of? That
is, could we buy and install as much more memory as we like, assuming no hardware
constraints? (Assume that the sizes of physical and virtual addresses don’t change.)

(c) If page size is 4K (212) and each page table entry consists of a page frame number and four
additional bits (present/absent, referenced, modified, and read-only), how much space is
required for each process’s page table? (You should express the size of each page table
entry in bytes, not bits, assuming 8 bits per byte and rounding up if necessary.)

(d) Suppose instead the system uses a single inverted page table (as described in chapter 4,
pages 213–214), in which each entry consists of a page number, a process ID, and four
additional bits (free/in-use, referenced, modified, and read-only), and at most 64 pro-
cesses are allowed. How much space is needed for this inverted page table? (You should
express the size of each page table entry in bytes, not bits, assuming 8 bits per byte and

2



CSCI 4320 Homework 4 Fall 2007

rounding up if necessary.) How does this compare to the amount of space needed for 64
regular page tables?

4. (5 points) Consider a small computer system with only four page frames. Suppose you have
implemented the aging algorithm for page replacement, using 4-bit counters and updating
the counters after every clock tick, and suppose the R bits for the four pages are as follows
after the first four clock ticks.

Time R bit (page 0) R bit (page 1) R bit (page 2) R bit (page 3)

after tick 1 0 1 1 1

after tick 2 1 0 1 1

after tick 3 1 0 1 0

after tick 4 1 1 0 1

What are the values of the counters (in binary) for all pages after these four clock ticks? If a
page needed to be removed at that point, which page would be chosen for removal?

5. (5 points) Tanenbaum says, in one of the questions at the end of the chapter, that although
the 8086 processor provided no support for virtual memory, there were companies that sold
computer systems that used an unmodified 8086 processor and did paging. How do you think
they managed this? (Hint: Think about the logical location of the MMU.)

6. (5 points) The operating system designers at Acme Computer Company have been asked
to think of a way of reducing the amount of disk space needed for paging. One person
proposes never saving pages that only contain program code, but simply paging them in
directly from the file containing the executable. Will this work always, never, or sometimes?
If “sometimes”, when will it work and when will it not? (Hint: Search your recollections of
CSCI 2321 — or another source — for a definition of “self-modifying code”.)

7. (5 points) A computer at Acme Company used as a compute server (i.e., to run batch jobs)
is observed to be running slowly (turnaround times longer than expected). The system uses
demand paging, and there is a separate disk used exclusively for paging. The sysadmins are
puzzled by the poor performance, so they decide to monitor the system. It is discovered that
the CPU is in use about 20% of the time, the paging disk is in use about 98% of the time,
and other disks are in use about 5% of the time. For each of the following, say whether it
would be likely to increase CPU utilization and why.

(a) Installing a faster CPU.

(b) Installing a larger paging disk.

(c) Increasing the number of processes (degree of multiprogramming).

(d) Decreasing the number of processes (degree of multiprogramming).

(e) Installing more main memory.

(f) Installing a faster paging disk.

8. (5 points) How long it takes to access all elements of a large data structure can depend on
whether they’re accessed in contiguous order (i.e., one after another in the order in which
they’re stored in memory), or in some other order. The classic example is a 2D array, in
which performance of nested loops such as

3



CSCI 4320 Homework 4 Fall 2007

for (int r = 0; r < ROWS; ++r)

for (int c = 0; c < COLS; ++c)

array[r][c] = foo(r,c);

can change drastically for a large array if the order of the loops is reversed. Give an expla-
nation for this phenomenon based on what you have learned from our discussion of memory
management. For extra credit, give another explanation that might also be true for a com-
puter such as one of our lab machines.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 4320 homework 4”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Fedora 7 Linux machines, so you should probably make sure they work in that environment before
turning them in.

1. (5 points) Write a program or programs to demonstrate the phenomenon described in
problem 8. Turn in your program(s) and output showing differences in execution time. (It’s
probably simplest to just put this output in a text file and send that together with your source
code file(s).) I’d prefer programs in C, C++, or Java, but anything that can be compiled
and executed on one of the F7 lab machines is fine (as long as you tell me how to compile
and execute what you turn in, if it’s not C/C++ or Java). You don’t have to develop and
run your programs on one of the FC5 lab machines, but if you don’t, (1) tell me what system
you used instead, and (2) be sure your programs at least compile and run on one of the lab
machines, even if they don’t necessarily give the same timing results as on the system you
used.

Possibly helpful hints:

• An easy way to measure how long program mypgm takes on a Linux system is to run it by
typing time mypgm. Another way is to run it with /usr/bin/time mypgm. (This gives
more/different information — try it.) If you’d rather put something in the program
itself to collect and print timing information, for C/C++ programs you could use the
function in timer.h1 to obtain starting and ending times for the section of the code you
want to time, or for Java programs you could use System.currentTimeMillis.

• Your program doesn’t have to use a 2D array (you might be able to think of some other
data structure that produces the same result). If you do use a 2D array, though, keep
in mind the following:

– To the best of my knowledge, C and C++ allocate local variables on the stack,
which may be limited in size. Dynamically allocated variables (i.e., those allocated
with malloc or new) aren’t subject to this limit.

– Dynamic allocation of 2D arrays in C is full of pitfalls. It may be easier to just
allocate a 1D array and fake accessing it as a 2D array (e.g., the element in x[i][j],
if x is a 2D array, is at offset i*ncols+j).

1http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04/Problems/timer.h

4



CSCI 4320 Homework 4 Fall 2007

2. (10 points) Write a program to simulate at least one of page replacement algorithms described
in the text. (FIFO is probably the simplest choice.) Your program should accept the following
inputs:

• The number of pages, and a list of page references, each in the form ”R pagenumber”
(for a read reference) or ”W pagenumber” (for a write/modify reference). Here is sample
input2.

• A command-line argument giving the number of page frames. (The point of providing
this separately from the rest of the input is to make it easy to observe how things change
if you vary the amount of memory, other things being equal.)

• Added 10/31: Additional inputs as needed for particular algorithms — for example, a
command-line argument that specifies how often to clear the R bits in all page-table
entries. (In a real system this would probably be done at fixed time intervals; you could
simplify by doing it every so many memory references.) If you do this, document it
somewhere (preferably in program comments).

Your program should print the following output:

• Total number of page references.

• Number of page references that changed the page (’W’).

• Number of page faults.

• Number of times a page had to be written out.

Make the following assumptions:

• Initially memory is empty.

• All memory references are valid — if the page is not in memory, it can be read in from
disk. (You don’t have to simulate that part, just count how often it happens.)

You will get full credit for correctly simulating one algorithm, extra credit for simulating
more than one. You could even try implementing the optimal algorithm — since you have
full knowledge of “the future”, this is possible!

You may find it useful to start from this stripped-down version of my solution-in-work (in
Java this time, comments in the classes should explain what they all do).

• PageReplacerTest.java3.

• PageReference.java4.

• PageReplacer.java5.

• PageReplacerFIFO.java6.

2http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04//Problems/

PRA-example-in
3http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04/Problems/

PageReplacerTest.java
4http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04/Problems/

PageReference.java
5http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04/Problems/

PageReplacer.java
6http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04/Problems/

PageReplacerFIFO.java

5



CSCI 4320 Homework 4 Fall 2007

• PageReplacerStats.java7.

7http://www.cs.trinity.edu/∼bmassing/Classes/CS4320 2007fall/Homeworks/HW04/Problems/

PageReplacerStats.java

6


