
CSCI 4320 August 27, 2007

Slide 1

Administrivia

• (None.)

Slide 2

Why Review History?

• To understand roots/development of current operating systems.

• As a way of getting many perspectives on “what do we want an o/s to do, and
how do we make it do that?”

• Because history is intrinsically interesting? Try to imagine what using some of
those early machines might have been like.

• (To allow the instructor to relive the days of his/her youth?)

CSCI 4320 August 27, 2007

Slide 3

The Early Days (1940s)

• Programming done by making physical connections on a plugboard (!).

• Better than no computer at all, but tedious and inefficient!

• Example: the ENIAC (picture here).

Slide 4

The Early Days (1940s – 1950s)

• Key improvements: stored-program concept, punch cards.

• Programming done by encoding machine language into cards.

• Program included code to start up computer, read rest of program into
memory, do all input and output, etc. (no operating system).

• One program at a time, machine operated by programmer.

• Better, but still tedious and inefficient!

http://www-ivs.cs.uni-magdeburg.de/bs/lehre/wise0102/progb/vortraege/kmuecke/eniac.jpg

CSCI 4320 August 27, 2007

Slide 5

The Early Days (1950s)

• Key improvements: assemblers and compilers, libraries of commonly-used
code, specialists to run machine (operators).

• Programming done in assembly language (or early high-level language),
punched into cards.

• Separate steps to translate to machine language, execute.

• One program at a time, but machine operated by specialist.

• Less tedious, less inefficient.

• Still cumbersome for programmers, CPU idle between steps.

Slide 6

Batch Systems (1950s)

• Key improvement: “batch” idea — automate transitions between steps
(translate program, execute, translate next program, etc.).

• How to make this work? separate input by “control cards”, write primitive
operating system to interpret them, manage transitions.

• Less inefficient, but I/O devices slow, so CPU idle a lot — still one program at
a time.

• Still cumbersome for programmers — punch program into cards, give to
operator, wait for output.

CSCI 4320 August 27, 2007

Slide 7

Control Cards — Example

//jobname JOB acctno,name,
//stepname EXEC PGM=compiler_name,PARM=(options)
//STEPLIB DD DSNAME=path_for_compiler
//SYSUT1 DD UNIT=SYSDA,SPACE=(subparms)
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=object_code,UNIT=SYSDA,
// DISP=(MOD,PASS),SPACE=(subparms)
//SYSIN DD *
source code
/*
//stepname EXEC PGM=load-and-go
....
.... input data for program

Slide 8

Multiprogramming Systems (1960s – ?)

• Key improvement: “multiprogramming” — more than one program in memory,
so when one has to wait another can run.

• How to make this work? requires much more complex operating system —
must share memory and I/O devices among programs, switch between them,
etc.

• Efficient use of hardware.

• Still cumbersome for programmers — no real changes here.

• Example: IBM mainframe (picture here, 1964); keypunch machine (picture
here); line printer (picture here).

http://www.computermuseum.li/Testpage/IBM-360-1964-2.jpg
http://www.math-cs.gordon.edu/courses/cs323/FORTRAN/keypunch.jpg
http://www.cs.ncl.ac.uk/events/anniversaries/40th/images/peripherals/14.jpg

CSCI 4320 August 27, 2007

Slide 9

Timesharing Systems (1960s – ?)

• Key improvements: “interactive” users (using text terminals), utility programs
to support them (shells, text editors, etc.).

• How to make this work? like multiprogramming, but now programs sharing
memory are interactive users wanting fast response.

• Efficient use of hardware.

• Much less cumbersome for program development!

Slide 10

Personal Computers (1980s – ?)

• Similar evolution of operating systems — initially very simple, gradually
becoming more complex/capable.

• Features from mainframes adopted as hardware permitted.

• A key difference — emphasis on user convenience rather than efficient use of
hardware.

CSCI 4320 August 27, 2007

Slide 11

Evolution of Operating Systems, Recap

• Increasing hardware capability.

• Increasing o/s functionality and complexity — from simple program loader to
complex multitasking system.

• Parallels between evolution of mainframe o/s and PC o/s.

Slide 12

Minute Essay

• What’s the most primitive and/or cumbersome system you’ve personally used
to write programs?

