
CSCI 4320 August 29, 2007

Slide 1

Administrivia

• A reminder: Please do not reboot the machines in HAS 340! People depend
on these machines to do background processing.

If a previous user has left a machine in the “locked by screensaver” state, you
can bail out by pressing control-alt-backspace to restart X (the graphical
subsystem) without disturbing background processes.

If you log out from the “System” menu, it might be easy to shut down by
mistake. Can put an icon on the task bar for logout to avoid this.

• Prox card access should be enabled now, so you should be able to get into
the labs after hours.

Slide 2

Operating System Functionality

• Provide a “virtual machine”:

– Filesystem abstraction — files, directories, ownership, access rights, etc.

– Process abstraction — “process” is a name for one of a collection of
“things happening at the same time” (in effect if not in fact), including:

∗ In batch systems, user “jobs”, plus input/output spooling.
∗ In timesharing system, interactive users.
∗ In PC o/s, concurrently-executing tasks.

Here too, idea of ownership / access rights.

• Manage resources (probably on behalf of multiple users/applications):

– Memory.

– CPU cycles (one or more CPUs).

– I/O devices.



CSCI 4320 August 29, 2007

Slide 3

Overview of Hardware

• Simplified view of hardware (as it appears to programmers) — processor(s),
memory, I/O devices, bus.

• (See figure, p. 21.)

• Next few sections talk about each component — what it does (from user’s
point of view) and low-level interface to software.

Slide 4

Processors

• “Instruction set” of primitive operations — load/store, arithmetic/logical
operations, control flow.

• Basic CPU cycle — fetch instruction, decode, execute.

• Registers — “local memory” for processor; general-purpose registers for
arithmetic and other operations, special registers (program counter, stack
pointer, program status word (PSW)).

• Now consider what additional features would make it easier to write an
operating system . . .



CSCI 4320 August 29, 2007

Slide 5

Interrupt Mechanism

• Very useful to have a way to interrupt current processing when an unexpected
or don’t-know-when event happens — error occurs (e.g., invalid operation),
I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart
current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —
normally o/s code that saves other registers, re-enables interrupts, decides
what to do next, etc.

• Usually have a TRAP instruction for generating interrupt.

• Could you write an o/s without this?

Slide 6

Dual-Mode Operation, Privileged Instructions

• Useful to have mechanism to keep application programs from doing things
that should be reserved for o/s.

• Usual approach — in hardware, define two modes for processor (supervisor
and user), privileged instructions.

– Privileged instructions — things only o/s should do, e.g., enable/disable
interrupts.

– Bit in PSW indicates supervisor mode (o/s only, privileged instructions
okay) or user mode (application programs, privileged instructions not
allowed).

– When to switch modes? when o/s starts application program, when
application program requests o/s services, on error.

• Could you write an o/s without this?



CSCI 4320 August 29, 2007

Slide 7

Memory Protection

• Very useful to have a way to give each process (including o/s) its own
variables that other processes can’t alter.

• Usual approach — provide a hardware mechanism such that attempting to
access memory out of ranges generates exception/interrupt; several ways,
including:

– Limit each process to a range of memory locations; hold starting and
ending addresses in special registers.

– Partition memory into blocks, give each block a numeric key, give each
process a key, and only allow processes to access blocks if keys match.

• Could you write an o/s without this?

Slide 8

Timer

• Useful to have a way to set a timer / “alarm clock” — e.g., to get control back if
application program enters infinite loop.

• Usual approach — hardware features that tracks real time and can be set to
interrupt CPU.

• Could you write an o/s without this?



CSCI 4320 August 29, 2007

Slide 9

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:
registers, cache, RAM, magnetic disk, magnetic tape. (See picture, p. 24.)

• Note also — some types volatile, some non-volatile.

Slide 10

Program Relocation

• At the machine-instruction level, references to memory are in terms of an
absolute number. Compilers/assemblers can generate these only by making
assumption about where program will reside in memory.

• In the very early days, programs started at 0, so no problem. Now they hardly
ever do, so we need a way to relocate programs — when loaded, or “on the
fly”.

• “On the fly” relocation uses MMU (memory management unit) — which can
provide both program relocation and memory protection.

Logically between CPU and memory, physically usually part of CPU.

A simple scheme — base and limit registers (described in text). When do
values in them need to change?



CSCI 4320 August 29, 2007

Slide 11

I/O Devices

• What they provide (from the user’s perspective):

– Non-volatile storage (disks, tapes).

– Connections to outside world (keyboards, microphones, screens, etc.,
etc.).

• Distance between hardware and “virtual machine” is large here, so usually
think in terms of:

– Layers of s/w abstraction (as with other parts of o/s).

– Layers of h/w abstraction too: most devices attached via controller, which
provides a h/w layer of abstraction (e.g., “IDE controller”).

Slide 12

I/O Basics

• CPU communicates with device controller by reading/writing device registers;
device controller communicates with device.

• Memory-mapped I/O versus I/O instructions.

• Polling versus interrupts.

• Functionality for a particular device packaged as “device driver”.

• I/O in application programs — make system call to invoke o/s services (more
about system calls later).



CSCI 4320 August 29, 2007

Slide 13

Minute Essay

• I once had a learning experience about “how DOS is different from a real o/s”.
Summary version: A program using pointers (possibly uninitialized) caused
the whole machine to lock up, so thoroughly that the only recovery was to
power-cycle.

What do you think went wrong?

Slide 14

Minute Essay Answer

• The program changed memory at the addresses pointed to by the uninitialized
pointers — and this memory was being used by the o/s, possibly to store
something related to interrupt handling. A “real” o/s wouldn’t allow this!

(Then again, the version of MS-DOS in question was supposedly written to
run on hardware that didn’t provide memory protection, so maybe it’s not
DOS’s fault.)


