
CSCI 4320 September 17, 2007

Slide 1

Administrivia

• Reminder: Homework 1 due today at 5pm. Submit code by e-mail. For
everything else I prefer hard copy.

(Office/lab hours this afternoon if last-minute questions.)

Slide 2

Minute Essay From Last Lecture

• (See notes from last time.)

• Most people more or less got the answers I had in mind. (Apparently no
budding lawyers here quibbling about details.) Minimum number running — is
there one? Answer might be “it depends”.



CSCI 4320 September 17, 2007

Slide 3

Minute Essay

• FIX THIS

Slide 4

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —
what?



CSCI 4320 September 17, 2007

Slide 5

Implementing Processes, Continued

• Data structure to represent each process would include some way to
represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,
registers, etc.

– Other stuff as needed — a list of open files, e.g.

• Then you’d collect these into a table (or some similar structure) — “process
control table”, with individual data structures being “entries in the process
control table” or “process control blocks”.

Slide 6

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information
similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash
table keyed by PID.

• (This is according to online information about the 2.4 kernel.)



CSCI 4320 September 17, 2007

Slide 7

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something
that has its own address space, list of open files, etc. Often these are called
“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t share data, switching between them is
expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the
abstract process idea but allows sharing data and faster context switching —
“threads”.

Slide 8

Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads
owned by a process share some of its state — address space, list of open
files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,
including program counter).

• Implementation involves data structures similar to process table.

• Advantages / disadvantages (compared to processes)?



CSCI 4320 September 17, 2007

Slide 9

Threads, Continued

• Advantages: threads can share data (same address space), switching from
thread to thread is fairly fast.

• Disadvantages: sharing data has its hazards (more about this later).

Slide 10

Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” (next two
slides).

• Various hybrid schemes also possible.



CSCI 4320 September 17, 2007

Slide 11

Implementing Threads “In User Space”

• Basic idea — operating system thinks it’s managing single-threaded
processes, all the work of managing multiple threads happens via library calls
within each process.

• Advantages / disadvantages?

Slide 12

Implementing Threads “In User Space”, Continued

• Advantages: fewer system calls, hence probably more efficient.

• Disadvantages:

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible.

– Using multiple CPUs is difficult/impossible.



CSCI 4320 September 17, 2007

Slide 13

Implementing Threads “In Kernel Space”

• Basic idea — operating system is involved in managing threads, the work of
managing multiple threads happens via system calls (rather than user-level
library calls).

• Advantages / disadvantages?

Slide 14

Implementing Threads “In Kernel Space”, Continued

• Advantages: avoids the difficulties of implementing in user space.

• Disadvantages: probably less efficient.



CSCI 4320 September 17, 2007

Slide 15

Threads — Example Implementations

• Unix systems vary as to which they use (see chapter 10 for more info). Early
versions of Linux provided no support for kernel-space threading, but there
were libraries for the user-space version. Kernel now provides support, but
threads apparently basically processes with some different flags allowing
them to share memory, etc.

• Windows NT/2000 apparently is such that all processes have at least one
thread, and the basic scheme is either kernel-space or a hybrid (see
chapter 11 for more info).

Slide 16

Minute Essay

• What did you learn from doing Homework 1 (questions about what should be
allowed in user/supervisor mode, tracing system calls, writing a simple shell)?

Also tell me about anything you found particularly easy / difficult / interesting /
annoying.

• I’m reviewing options for out-of-class assignments for the rest of the course.
Would you welcome more emphasis on programming? Are you comfortable in
Java? C++? C?


