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Administrivia

o Homework 2 coming soon, probably before next class. I'll send e-mail if/when.
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Review — Invariants and Concurrent Algorithms

e Last time we talked about notion of “invariant” being helpful in thinking about
concurrent algorithms.
e Loosely speaking — “something about the program that’s always true”.
More carefully: a statement about program variables/state such that:
— It’s true initially.
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— If it's true before any statement of the program, it’s still true afterwards.
Verify by first looking at initial state, then at everything in the program that
changes variables/states mentioned in the invariant.

e Goal is to come up with an invariant that’s not too difficult to verify by looking
at the code and implies the property you want — as with loop invariants as
discussed in CSCI 1323 and last time.

o We're doing this informally (not very rigorously, with some hand-waving), but it

\ can be done much more formally and rigorously. )
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Mutual Exclusion, Continued

e Recall problem ...

e Recall description of “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies LlockVar to registerXand (2) sets LockVar to non-zero,

all as one atomic operation.

-

\_

Proposed Solution Using TSL Instruction

e Shared variables:
int lock = 0;

Pseudocode for each process:
while (true) {
enter_cr();
do_cr();
leave_cr();

do_non_cr();

o Does it work?

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return
leave_cr:
store 0 in lock

return
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Solution Using TSL Instruction, Continued

e Proposed invariant: “1 ock is 0 exactly when no processes in their critical
regions, and nonzero exactly when one process in its critical region.”
e Invariant holds.

This means first requirement is met. Others met too — well, except that it
Slide 5 might be “unfair” (some process waits forever).

Mutual Exclusion Solutions So Far

e Solutions so far have some problems: inefficient, dependent on whether
scheduler/etc. guarantees fairness.
(It's worth noting too that for the simple ones needing no special hardware —
e.g., Peterson’s algorithm — whether they work on real hardware may depend

Slide 6 on whether values “written” to memory are actually written right away or
cached.)

e Also, they're very low-level, so might be hard to use for more complicated
problems.

® So, people have proposed various “synchronization mechanisms” . ..
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Semaphores

e History — 1965 paper by Dijkstra (possibly earlier work by lverson).

e |dea — define semaphore ADT:
— “Value” — non-negative integer.
— Two operations, both atomic:

Slide 7 * up (V) — add one to value.

* down (P) — block until value is nonzero, then subtract one.

e Ignoring for now how to implement this — is it useful?

Mutual Exclusion Using Semaphores

e Shared variables:
semaphore S(1);
Pseudocode for each process:

while (true) {

Slide 8 down(S);
do_cr();
up(S);
do_non_cr();

}

e Invariant: “S has value 1 exactly when no process in its critical region, 0
exactly when one process in its critical region, and never has values other
thanOor1.”

. J
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Mutual Exclusion Using Semaphores, Continued

e Invariant again: “S has value 1 exactly when no process in its critical region, 0
exactly when one process in its critical region, and never has values other
thanOor1”

Obvious (?) that this means first requirement is met. Can check that others

are met too.
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Bounded Buffer Problem

e (Example of slightly more complicated synchronization needs.)

e |dea — we have a buffer of fixed size (e.g., an array), with some processes
(“producers”) putting things in and others (“consumers”) taking things out.
Synchronization:

Slide 10 — Only one process at a time can access buffer.

— Producers wait if buffer is full.

— Consumers wait if buffer is empty.

o Example of use: print spooling (producers are jobs that print, consumer is
printer — actually could imagine having multiple printers/consumers).
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Bounded Buffer Problem, Continued

o Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {

Slide 11 item = generate(); item = get(B);
put(item, B); use(item);

} }
e Synchronization requirements:

1. At most one process at a time accessing buffer.
2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

Bounded Buffer Problem, Continued

o We already know how to guarantee one-at-a-time access. Can we extend
that?

e Three situations where we want a process to wait:
— Only one get/put at a time.

Slide 12 — If B is empty, consumers wait.

— If Biis full, producers wait.
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Bounded Buffer Problem, Continued

e What about three semaphores?
— One to guarantee one-at-a-time access.

— One to make producers wait if B is full — so, it should be zero if B is full —
“number of empty slots”?

Slide 13 — One to make consumers wait if B is empty — so, it should be zero if B is
empty — “number of slots in use”?

Bounded Buffer Problem — Solution

e Shared variables:

buffer B(N); // empty, capacity N
semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Slide 14 Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {
item = generate(); down (full);
down (empty) ; down (mutex) ;
down (mutex) ; item = get(B);
put(item, B); up(mutex) ;
up(mutex) ; up(empty) ;
up(full); use(item);
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o Alleged joke (from some random Usenet person):
A man’s P should exceed his V else what’s a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)
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e |t's a pun. The idea is roughly that if you never have a situation in which
you've attempted more “down” operations than “up” operations, you didn’t
need a semaphore. (Or that's what | think it means. The author might have
another ideal)
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