CSCI 4320 September 24, 2007

4)

Administrivia

o Homework 2 coming soon, probably before next class. I'll send e-mail if/when.

Slide 1

Review — Invariants and Concurrent Algorithms

e Last time we talked about notion of “invariant” being helpful in thinking about
concurrent algorithms.
e Loosely speaking — “something about the program that’s always true”.
More carefully: a statement about program variables/state such that:
— It’s true initially.
Slide 2
— If it's true before any statement of the program, it’s still true afterwards.
Verify by first looking at initial state, then at everything in the program that
changes variables/states mentioned in the invariant.

e Goal is to come up with an invariant that’s not too difficult to verify by looking
at the code and implies the property you want — as with loop invariants as
discussed in CSCI 1323 and last time.

o We're doing this informally (not very rigorously, with some hand-waving), but it

\ can be done much more formally and rigorously.)

CSCI 4320

Slide 3

Slide 4

September 24, 2007

Mutual Exclusion, Continued

e Recall problem ...

e Recall description of “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies LlockVar to registerXand (2) sets LockVar to non-zero,

all as one atomic operation.

-

_

Proposed Solution Using TSL Instruction

e Shared variables:
int lock = 0;

Pseudocode for each process:
while (true) {
enter_cr();
do_cr();
leave_cr();

do_non_cr();

o Does it work?

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return
leave_cr:
store 0 in lock

return

CSCI 4320 September 24, 2007

~N

Solution Using TSL Instruction, Continued

e Proposed invariant: “1 ock is 0 exactly when no processes in their critical
regions, and nonzero exactly when one process in its critical region.”
e Invariant holds.

This means first requirement is met. Others met too — well, except that it
Slide 5 might be “unfair” (some process waits forever).

Mutual Exclusion Solutions So Far

e Solutions so far have some problems: inefficient, dependent on whether
scheduler/etc. guarantees fairness.
(It's worth noting too that for the simple ones needing no special hardware —
e.g., Peterson’s algorithm — whether they work on real hardware may depend

Slide 6 on whether values “written” to memory are actually written right away or
cached.)

e Also, they're very low-level, so might be hard to use for more complicated
problems.

® So, people have proposed various “synchronization mechanisms” . ..

CSCI 4320 September 24, 2007

Semaphores

e History — 1965 paper by Dijkstra (possibly earlier work by lverson).

e |dea — define semaphore ADT:
— “Value” — non-negative integer.
— Two operations, both atomic:

Slide 7 * up (V) — add one to value.

* down (P) — block until value is nonzero, then subtract one.

e Ignoring for now how to implement this — is it useful?

Mutual Exclusion Using Semaphores

e Shared variables:
semaphore S(1);
Pseudocode for each process:

while (true) {

Slide 8 down(S);
do_cr();
up(S);
do_non_cr();

}

e Invariant: “S has value 1 exactly when no process in its critical region, 0
exactly when one process in its critical region, and never has values other
thanOor1.”

. J

CSCI 4320 September 24, 2007

Mutual Exclusion Using Semaphores, Continued

e Invariant again: “S has value 1 exactly when no process in its critical region, 0
exactly when one process in its critical region, and never has values other
thanOor1”

Obvious (?) that this means first requirement is met. Can check that others

are met too.
Slide 9

Bounded Buffer Problem

e (Example of slightly more complicated synchronization needs.)

e |dea — we have a buffer of fixed size (e.g., an array), with some processes
(“producers”) putting things in and others (“consumers”) taking things out.
Synchronization:

Slide 10 — Only one process at a time can access buffer.

— Producers wait if buffer is full.

— Consumers wait if buffer is empty.

o Example of use: print spooling (producers are jobs that print, consumer is
printer — actually could imagine having multiple printers/consumers).

CSCI 4320 September 24, 2007

Bounded Buffer Problem, Continued

o Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {

Slide 11 item = generate(); item = get(B);
put(item, B); use(item);

} }
e Synchronization requirements:

1. At most one process at a time accessing buffer.
2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

Bounded Buffer Problem, Continued

o We already know how to guarantee one-at-a-time access. Can we extend
that?

e Three situations where we want a process to wait:
— Only one get/put at a time.

Slide 12 — If B is empty, consumers wait.

— If Biis full, producers wait.

CSCI 4320 September 24, 2007

Bounded Buffer Problem, Continued

e What about three semaphores?
— One to guarantee one-at-a-time access.

— One to make producers wait if B is full — so, it should be zero if B is full —
“number of empty slots”?

Slide 13 — One to make consumers wait if B is empty — so, it should be zero if B is
empty — “number of slots in use”?

Bounded Buffer Problem — Solution

e Shared variables:

buffer B(N); // empty, capacity N
semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Slide 14 Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {
item = generate(); down (full);
down (empty) ; down (mutex) ;
down (mutex) ; item = get(B);
put(item, B); up(mutex) ;
up(mutex) ; up(empty) ;
up(full); use(item);

CSCI 4320 September 24, 2007

o Alleged joke (from some random Usenet person):
A man’s P should exceed his V else what’s a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)

Slide 15
e |t's a pun. The idea is roughly that if you never have a situation in which
you've attempted more “down” operations than “up” operations, you didn’t
need a semaphore. (Or that's what | think it means. The author might have
another ideal)
Slide 16

