CSCI 4320 September 26, 2007

Administrivia

e More homework on the Web. Split into two assignments, and timed to be

turned in before the midterm October 10:

o Homework 2 due a week from today.

o Homework 3 due a week from Monday (and not accepted past classtime).

Slide 1
Semaphores — Recap
o Semaphore ADT:
— Value — non-negative integer.
— Two operations, up and down; both atomic.
e | ast time — solutions using semaphores for mutual exclusion problem,
Slide 2 bounded buffer problem.




September 26, 2007

CSCI 4320
Implementing Semaphores
e We want to define:
— Data structure to represent a semaphore.
— Functions up and down.
e up and down should work the way we said, and we'd like to do as little
Slide 3 busy-waiting as possible.

(
Implementing Semaphores, Continued

e |dea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

e Then how should this work . ..

Slide 4




CSCI 4320

September 26, 2007

Slide 5

Implementing Semaphores, Continued

e Variables — integer value, queue of process IDs queue.

down() {
bool zero;
enter_cr();
zero = (value == 0);
if (!zero)
value -= 1;
else

enqueue (current_process, queue);

leave_cr();
if (zero)
block();

}

up() {

// mark current process blogked

process p = null;
enter_cr();
if (empty(queue))
value += 1;
else
p = dequeue(queue);
leave_cr();
if (p != null)
unblock(p) ;

e enter_cr (), leave_cr ()? nextslide.

// mark p runnable

Slide 6

Implementing Semaphores, Continued

e Revised functions to enter, leave critical region:

enter_cr:
TSL registerX, lockVar
compare registerX with 0
if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr
ok:

return

leave_cr:
store 0 in lock
return




CSCI 4320 September 26, 2007

Another Synchronization Mechanism — Monitors

e History — Hoare (1975) and Brinch Hansen (1975).
e |dea — combine synchronization and object-oriented paradigm.

® A monitor consists of
— Data for a shared object (and initial values).
Slide 7 — Procedures — only one at a time can run.
e “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer
not empty):
— Value — queue of suspended processes.
— Operations:
* Wait — suspend execution (and release mutual exclusion).

* Signal — if there are processes suspended, allow one to continue. (if
not, signal is “lost”). Some choices about whether signalling process

K continues, or signalled process awakens right away. )

Bounded Buffer Problem, Revisited

e Define a bounded_buf fer monitor with a queue and insert and

remove procedures.

o Shared variables:

bounded_buffer B(N);

Slide 8 Pseudocode for producers: Pseudocode for consumers:
while (true) { while (true) {

item = generate(); B.remove(item) ;
B.insert(item); use(item) ;




CSCI 4320

September 26, 2007

Slide 9

Bounded-Buffer Monitor

e Data:
buffer B(N);
int count = 0;

condition full;

condition empty;

e Procedures:

insert(item itm) {
if (count == N)
wait(full);
put(itm, B);
count += 1;
signal (empty) ;
}
e Does this work?

// N constant, buffer empty

remove (item &itm) {
if (count == 0)
wait (empty);
itm = get(B);
count -= 1;

signal(full);

Slide 10

Implementing Monitors

e Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

e Java’s methods for thread synchronization are based on monitors:

— Data for monitor is instance variables (data for class).

Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

functionality.

wait,notify,notifyAll methods.

No condition variables, but above methods provide more or less equivalent




CSCI 4320 September 26, 2007

Yet Another Synchronization Mechanism — Message
Passing

e Previous synchronization mechanisms all involve shared variables; okay in
some circumstances but not very feasible in others (e.g., multiple-processor
system without shared memory).

Slide 11 o |dea of message passing — each process has a unique ID; two basic
operations:
— Send — specify destination ID, data to send (message).

— Receive — specify source ID, buffer to hold received data. Usually some
way to let source ID be “any”.

Message Passing, Continued

e Exact specifications can vary, but typical assumptions include:

— Sending a message never blocks a process (more difficult to implement
but easier to work with).

— Receiving a message blocks a process until there is a message to receive.
Slide 12 — All messages sent are eventually available to receive (can be non-trivial to
implement).

— Messages from process A to process B arrive in the order in which they
were sent.




CSCI 4320 September 26, 2007

Implementing Message Passing

® On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.
o On a machine with physically shared memory, can either copy (from address
space to address space) or somehow be clever.

Slide 13 (Why would you want to do this? programming model is in some ways
simpler, doesn’t require memory shared among processes.)

e Have you written programs using any of these mechanisms, or others? (e.g.,
multithreaded Java programs, message-passing programs).

Slide 14




