
CSCI 4320 September 28, 2007

Slide 1

Administrivia

• (None.)

Slide 2

Quote of the Day/Week/?

• “As soon as we started programming, we found to our surprise that it wasn’t
as easy to get programs right as we had thought. Debugging had to be
discovered. I can remember the exact instant when I realized that a large part
of my life from then on was going to be spent finding mistakes in my own
programs.” (Maurice Wilkes: 1948)

(Wilkes was a key figure in the early days of computing.)



CSCI 4320 September 28, 2007

Slide 3

Yet Another Synchronization Mechanism — Message
Passing

• Previous synchronization mechanisms all involve shared variables; okay in
some circumstances but not very feasible in others (e.g., multiple-processor
system without shared memory).

• Idea of message passing — each process has a unique ID; two basic
operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some
way to let source ID be “any”.

Slide 4

Mutual Exclusion, Revisited

• How to solve mutual exclusion problem with message passing?

• Several approaches based on idea of a single “token”; process must “have
the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in
its critical region it has the token.”)

• One such approach — a “master process” that all other processes
communicate with; simple but can be a bottleneck.

• Another such approach — ring of “server processes”, one for each “client
process”, token circulates.



CSCI 4320 September 28, 2007

Slide 5

Mutual Exclusion With Message-Passing (1)

• Idea — have “master process” (centralized control).

Pseudocode for client process:
while (true) {

send(master, "request");
receive(master, &msg);

// assume "token"
do_cr();
send(master, "token");
do_non_cr();

}

Pseudocode for master process:
bool have_token = true;
queue waitQ;
while (true) {

receive(ANY, &msg);
if (msg == "request") {

if (have_token) {
send(msg.sender, "token");
have_token = false;

}
else

enqueue(sender, waitQ);
}
else { // assume "token"

if (empty(waitQ))
have_token = true;

else {
p = dequeue(waitQ);
send(p, "token");

}
}

}

Slide 6

Mutual Exclusion With Message-Passing (2)

• Idea — ring of servers, one for each client.

Pseudocode for client process:
while (true) {

send(my_server, "request");
receive(my_server, &msg);

// assume "token"
do_cr();
send(my_server, "token");
do_non_cr();

}

Pseudocode for server process:
bool need_token = false;
if (my_id == first)

send(next_server, "token");
while (true) {

receive(ANY, &msg);
if (msg == "request")

need_token = true;
else { // assume "token"

if (msg.sender == my_client) {
need_token = false;
send(next_server, "token");

}
else if (need_token)

send(my_client, "token");
else

send(next_server, "token");
}

}



CSCI 4320 September 28, 2007

Slide 7

Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL
instruction.

• Higher-level mechanisms — semaphores, monitors, message passing. Often
built using something lower-level.

Slide 8

Classical IPC Problems

• Literature (and textbooks) on operating systems talk about “classical
problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems o/s designers
actually need to solve. Also a good way to compare ease-of-use of various
synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but
underlying problem is a simplified version of something “real”.



CSCI 4320 September 28, 2007

Slide 9

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking
and eating.

– Between every pair of philosophers, a fork; philosopher must have two
forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more
complex than mutual exclusion — multiple shared resources (forks),
processes (philosophers) must obtain two resources together. (Why five?
smallest number that’s “interesting”.)

Slide 10

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per
fork), so just solve them.

• Does this work? No — deadlock possible.



CSCI 4320 September 28, 2007

Slide 11

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let
only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no
deadlock, but it’s too restrictive.

Slide 12

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and
semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values
thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to
states.

– Array of five semaphores self[5], initial values 0, to allow us to make
philosophers wait.

• And then the code is somewhat complex . . .



CSCI 4320 September 28, 2007

Slide 13

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();
down(mutex);
state[i] = hungry;
test(i);
up(mutex);
down(self[i]);
eat();
down(mutex);
state[i] = thinking;
test(right(i));
test(left(i));
up(mutex);

}

Pseudocode for function:
void test(i)
{

if ((state[left(i)] != eating) &&
state[right(i) != eating) &&
state[i] == hungry) {

state[i] = eating;
up(self[i]);

}
}

Slide 14

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables? No
(because all accesses are “protected” by mutual-exclusion semaphore).

• Do we guarantee that neighbors don’t eat at the same time? Yes.

• Do we allow non-neighbors to eat at the same time? Yes.

• Could we deadlock? No.

• Does a hungry philosopher always get to eat eventually? Usually. Exception
is when two next-to-neighbors (e.g., 1 and 3) seem to conspire to starve their
common neighbor (e.g., 2).



CSCI 4320 September 28, 2007

Slide 15

Dining Philosophers — Chandy/Misra Solution

• Original solution allows for scenarios in which one philosopher “starves”
because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between
neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,
and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a
philosopher eats, it lowers its priority relative to its neighbors.

Slide 16

Other Classical Problems

• Readers/writers.

• Sleeping barber.

• And others . . .

• Advice — if you ever have to solve problems like this “for real”, read the
literature . . .



CSCI 4320 September 28, 2007

Slide 17

Minute Essay

• This wraps up the discussion of interprocess communication and
synchronization. Any questions?


