
CSCI 4320 November 5, 2007

Slide 1

Administrivia

• (None?)

Slide 2

I/O Continued — Device Specifics

• Next, a tour of major classes of devices. For each, we look first at what the
hardware can typically do, and then at what kinds of device-driver functionality
we might want to provide.



CSCI 4320 November 5, 2007

Slide 3

Clocks — Hardware

• System clock — can be simple or programmable. Programmable clock can
generate either one interrupt after specified interval or periodic interrupts
(“clock ticks”).

• Backup clock — usually battery-powered, used at startup and perhaps
periodically thereafter.

Slide 4

Clocks — Software

• Clock(s) can be treated as I/O devices, with device driver(s). Functions to
provide:

– Maintain time of day.

– Enforce time limits on processes.

– Provide timer / alarm-clock function.

– Do accounting, profiling, monitoring, etc.

– Do anything required by page replacement algorithm (turn off R bits in
page table entries, e.g.).

• Provide this functionality in code to be called on clock-tick interrupts.



CSCI 4320 November 5, 2007

Slide 5

Character-Oriented Terminals — Hardware Overview

• Hardware consists of character-oriented display (fixed number of rows and
columns) and keyboard, connected to CPU by serial line.

• Actual hardware no longer common (except in mainframe world), but
emulated in software (e.g., Unix xterm) so old programs still work. (Why does
anyone care? some of those old programs are still useful — e.g., text editors
— and usually very stable.)

Slide 6

Character-Oriented Terminals — Keyboard

• Hardware transmits individual ASCII characters.

• Device driver can pass them on one by one without processing, or can
assemble them into lines and allow editing (erase, line kill, suspend, resume,
etc.). Typically provide both modes.

• Device driver should also provide:

– Buffering, so users can type ahead.

– Optional echoing.



CSCI 4320 November 5, 2007

Slide 7

Character-Oriented Terminals — Display

• Hardware accepts regular characters to display, plus escape sequences
(move cursor, turn on/off reverse video, etc.).

In the old days, escape sequences for different kinds of terminals were
different — hence the need for a termcap database that allows calling
programs to be less aware of device-specific details.

• Device driver should provide buffering.

Slide 8

GUIs — Hardware Overview

• PC keyboard — sends very low-level detailed info (keys pressed/released);
contrast with keyboard for character-oriented terminal.

• Mouse — sends (delta-x, delta-y, button status) events.

• Display can be vector graphics device (rare now, works in terms of lines,
points, text) or raster graphics device (works in terms of pixels). Raster
graphics device uses graphics adapter, which includes:

– Video RAM, mapped to part of memory.

– Video controller that translates contents of video RAM to display. Has two
modes, text and bitmap.



CSCI 4320 November 5, 2007

Slide 9

GUI Software — Basic Concepts

• “WIMP” — windows, icons, menus, pointing device.

• Can be implemented as integral part of o/s (Windows) or as separate
user-space software (Unix).

Slide 10

GUIs — Keyboard

• Hardware delivers very low-level info (individual key press/release actions).

• Device driver translates these to character codes, typically using configurable
keymap.



CSCI 4320 November 5, 2007

Slide 11

GUIs — Display (Windows Approach)

• Each window represented by an object, with methods to redraw it.

• Output to display performed by calls to GDI (graphics device interface) —
mostly device-independent, vector-graphics oriented. A .wmf file (Windows
metafile) represents a collection of calls to GDI procedures.

Slide 12

Network Terminals — Hardware

• Keyboard, mouse, and display as described previously, plus local processor;
connected to remote system.

• Local processor can be very capable (X terminal, or even PC configured to
run as one) or more primitive (SLIM terminal).



CSCI 4320 November 5, 2007

Slide 13

GUIs — Display (Unix Approach)

• X Window System (its real name) designed to support both local input/output
devices and network terminals, in terms of:

– Programs that want to do GUI I/O.

– Program that provides GUI services. Can run on the same system as
applications, a different Unix system, an X terminal (where it’s the “o/s”), or
under another o/s (“X emulators” for Windows — e.g., Exceed, XFree86).

Which is the “client” and which the ”server”?

• Core system is client/server communication protocol (input, display events
akin to those in Windows) and windowing system. “Window manager” and/or
“desktop environment” is separate, as are “widget” libraries. Modularity
makes for flexibility and portability, at a cost in performance.

Slide 14

GUI-Based Programming

• Input from keyboard and mouse captured by o/s and turned into messages to
process owning appropriate window.

• Typical structure of GUI-based program is a loop to receive and dispatch
these messages — “event-driven” style of programming.

• Details vary between Windows and X, but overall idea is similar. See example
programs in textbook (or GUI parts of Mandelbrot program for my CSCI 3366
class).



CSCI 4320 November 5, 2007

Slide 15

Minute Essay

• What did you find most/least interesting/difficult about Homework 4?


