
CSCI 4320 November 7, 2007

Slide 1

Administrivia

• Homework 5 (about I/O) coming soon.

Slide 2

Minute Essay From 10/31

• (Question was about memory-mapped I/O versus special I/O instructions, with
regard to ease of writing device drivers in C. Some answers were interesting!)

• Which requires you to know more about the device? (Aren’t they the same?)

• Which can be done directly from C? (Need to be able to set a pointer to a
numeric value.)

• Could you use a library function to package the special instructions?
(Probably.) How about a system call? (Probably/maybe — efficient?)

• (Textbook also discusses other tradeoffs — e.g., hardware complexity,
reduction in address space.)



CSCI 4320 November 7, 2007

Slide 3

Disks — Hardware

• Magnetic disks:

– Cylinder/head/sector addressing may or may not reflect physical geometry
— controller should handle this.

– Controller may be able to manage multiple disks, perform overlapping
seeks.

• RAID (Redundant Array of Inexpensive/Independent Disks):

– Basic idea is to replace single disk and disk controller with “array” of disks
and RAID controller.

– Two possible payoffs — redundancy and performance (parallelism).

– Six “levels” (configurations) defined. Read all about it in textbook if
interested.

• Optical disks — CD, CD-R, CD-RW, DVD. Okay to skim details!

Slide 4

Disk Formatting

• Low-level formatting — each track filled with sectors (preamble, data, ECC
bits).

• Higher-level formatting — master boot record, partitions (logical disks),
partition table. Master boot record points to boot block in some partition.
Partition table gives info about partitions (size, location, use).

• Partition formatting — boot block, blocks for file system (more about that in
next chapter).



CSCI 4320 November 7, 2007

Slide 5

Disk Arm Scheduling Algorithms

• A little more about hardware: Time to read a block from disk depends on seek
time, rotational delay, and data transfer time. First two usually dominate.

• Earlier we said that typical device driver for disk maintains a queue of pending
requests (one per disk, if controller is managing more than one). What order
to process them in? several “disk arm scheduling algorithms”:

– FCFS (first come, first served).

– SSF (shortest seek first).

– Elevator.

How do they compare with regard to ease of implementation, efficiency?

Slide 6

Disk Error Handling

• Almost all disks have sectors with defects. Some controllers can recognize
them (repeated failures) and avoid them; if not, o/s (device driver) must do
this.

• Other kinds of errors also possible, e.g., failure to correctly position read/write
head; also must be handled either by controller (if possible) or o/s.



CSCI 4320 November 7, 2007

Slide 7

Other I/O-Related Topics

• “Stable storage” — use two disks to provide what appears to be a single more
reliable one (i.e., write either succeeds or leaves old data in place).

• Power management significant — some devices have “sleeping” and
“hibernating” states, o/s can try to determine when it would make sense to
use them. Example — screen blanking.

Slide 8

I/O in Unix/Linux

• Access to devices provided by special files (normally in /dev/*), to provide
uniform interface for callers. Two categories, block and character. Each
defines interface (set of functions) to device driver. Major device number used
to locate specific function.

• For block devices, buffer cache contains blocks recently/frequently used. (See
figure on p. 729.)

• For character devices, optional line-discipline layer provides some of what we
described for text-terminal keyboard driver. (See figure on p. 729.)

• Streams provide additional layer of abstraction for callers — can interface to
files, terminals, etc. (This is what you access with *scanf, *printf.)

(Aside: How do you get the man page for the printf function? (man
printf gives you something else.) Can be several man pages for given
name, in different “sections”. Get all of them with man -a.)



CSCI 4320 November 7, 2007

Slide 9

I/O in Windows

• Hardware Abstraction Layer (HAL) attempts to insulate rest of o/s from some
low-level details — e.g., I/O using ports versus memory-mapped I/O. (See
figure p. 779.)

• Standard interface to device drivers — Windows Driver Model. Drivers are
passed I/O Request Packet objects. (See figure on p. 829.)

• Interesting comparison of o/s sizes on p. 771.

Slide 10

Minute Essay

• Recently I argued with a Windows person about schemes for representing
devices: Unix uses “special files”, normally in /dev but can be anywhere,
identifiable as different from normal files; Windows puts them all at the top
level, prefix similar to drive letter.

Which seems more logical to you, and why? from the standpoint of end users,
application programmers, o/s developers?

• This wraps up what I plan to say about I/O (though not about filesystems,
which we’ll talk about starting next time). Anything else you’d like to hear
about?


