
CSCI 4320 November 16, 2007

Slide 1

Administrivia

• Reminder: Homework 5 due Monday.

• Homework 6 on Web, due Wednesday after holiday.

• Class next Wednesday: How many will be here?

Slide 2

Minute Essay From Last Lecture

• (Question was why so many different file systems.)

Different hardware/software configurations.

Different users/applications have different needs.

Different filesystems have different strengths/weaknesses.

Different ideas about how to store files.

New hardware.

New ideas for software.

Someone gets bored / wants to be different / is stubborn!

CSCI 4320 November 16, 2007

Slide 3

Security — Overview

• Goals:

– Data confidentiality — prevent exposure of data.

– Data integrity — prevent tampering.

– System availability — prevent DOS.

• What can go wrong:

– Deliberate intrusion — from casual snooping to “serious” intrusion.

– Accidental data loss — “acts of God”, hardware or software error, human
error.

Slide 4

User Authentication

• Based on “something the user knows” — e.g., passwords. Problems include
where to store them, whether they can be guessed, whether they can be
intercepted.

• Based on “something the user has” — e.g., key or smart card. Problems
include loss/theft, forgery.

• Based on “something the user is” – biometrics. Problems include
inaccuracy/spoofing.

CSCI 4320 November 16, 2007

Slide 5

Attacks From Within

• Trojan horses (and how this relates to $PATH).

• Login spoofing.

• Logic bombs and trap doors.

• Buffer overflows (and how this relates to, e.g, gets).

• And many more . . .

Slide 6

Designing a Secure System

• “Security through obscurity” isn’t very.

• Better to give too little access than too much — give programs/people as little
as will work.

• Security can’t be an add-on.

• “Keep it simple, stupid.”

CSCI 4320 November 16, 2007

Slide 7

Attacks From Outside

• Can categorize as viruses (programs that reproduce themselves when run)
and worms (self-replicating) — similar ideas, though.

• Many, many ways such code can get invoked — when legit programs are run,
at boot time, when file is opened by some applications (“macro viruses”), etc.

• Also many ways it can spread — once upon a time floppies were vector of
choice, now networks or e-mail. Common factors:

– Executable content from untrustworthy source.

– Human factors.

“Monoculture” makes it easier!

• Virus scanners can check all executables for known viruses (exact or fuzzy
matches), but hard/impossible to do this perfectly.

• Better to try to avoid viruses — some nice advice on p. 633.

Slide 8

Safe Execution of “Mobile” Code

• Is there a way to safely execute code from possibly untrustworthy source?
Maybe — approaches include sandboxing, interpretation, code signing.

• Example — Java’s designed-in security:

– At source level, very type-safe — no way to use void* pointers to
access random memory.

– When classes are loaded, “verifier” checks for potential security problems
(not generated by normal compilers, but could be done by hand).

– At runtime, security manager controls what library routines are called —
e.g., applets by default can’t do file operations, many kinds of network
access.

CSCI 4320 November 16, 2007

Slide 9

Trusted Systems

• Is it possible to write a secure O/S? Yes (says Tanenbaum).

• Why isn’t that done?

– People want to run existing code.

– People prefer (or are presumed to prefer) more features to more security.

Slide 10

Some Places to Learn More

• Special-topics course next semester (CSCI 3394, Information Security).

• comp.risks newsgroup / mailing list:
http://catless.ncl.ac.uk/Risks.

CSCI 4320 November 16, 2007

Slide 11

Minute Essay

• How to spend the remaining class periods? Ideas I’ve had — say which
sound interesting, or propose alternatives:

– What happens during startup / boot.

– Device-driver demo (if feasible).

– Linux internals.

– More about security (maybe “stack smashing for fun and profit” paper).

– Virtualization.

