CSCI 4320 November 28, 2007

Administrivia

o Reminder: Homework 6 due next time. (Was today, deferred.)

e Request: | forwarded e-mail asking all students in senior-level courses to fill
out a survey as part of the university-wide Quality Enhancement Plan. Please
do this if you possibly can!

Slide 1

The Boot Process

e What happens between the time you turn the computer on (or initiate reboot)
and the point at which you get a login prompt is — complicated, mysterious,
and involves both hardware and software.

e Today’s topic is to demystify it as much as possible. Textbook has some useful
Slide 2 short information, indexed under “boot” and “BIOS”. I'm going by that, from
the book Linux Kernel Internals (see syllabus), and various online sources.

e (Textbook also includes short descriptions of booting older versions of both
Unix and Windows.)




CSCI 4320 November 28, 2007

Booting — Hardware

o When a PC is powered on, hardware starts the BIOS (Basic Input Output
System), a program that lives in/on some form of nonvolatile memory. It
contains functions to read from the keyboard, write to the screen, and do disk
I/0.

Slide 3 e This BIOS first does a “Power-On Self Test” (POST) — check how much
memory is installed, whether basic devices are installed and responding.

e |t determines which device to try to boot from based on information also
stored in non-volatile memory. It then reads the first sector from this device —
“boot sector” or “master boot record”.

Boot Sector / Master Boot Record

e First sector on device from which we're booting must contain (in a format
known to the hardware / BIOS) a little bit of code, enough to get the boot

process going.

e For partitioned devices, this first sector (MBR) contains a partition table,
Slide 4 indicating which partition contains the logical device from which booting is
supposed to be done, and where to find that logical device’s boot sector.

e Either way, we get a little bit of code, which when executed (presumably with
the help of the BIOS) reads in — something else — from disk to memory, and
transfers control to it. The “something else” could be the actual operating
system, or a “boot loader” (such as LILO or GRUB, for Linux systems).

e (From here on, the discussion will be somewhat Linux-specific.)




CSCI 4320 November 28, 2007

Boot Loader

e LILO (or GRUB) looks at configuration files, possibly gets input from the

keyboard, and decides what to boot.

e |f it’s Linux, part of the configuration is the name of the file containing the
(compressed) kernel. This gets uncompressed and read into memory, and

Slide 5 control is transferred to it.

e (What happens if it's Windows being booted? good question, but my guess is
that LILO/GRUB reads in whatever boot sector would have been used to boot

Windows in a single-boot system, and transfers control to its little bit of code).

Starting the Kernel

First thing executed is assembly code that does hardware initialization,

including:

Put the processor in protected mode.

Do initialization for the MMU (set up page table for kernel).
Slide 6

Do initialization for interrupt processing (interrupt table/vector).




CSCI 4320 November 28, 2007

Starting the Kernel, Continued

e Next, control is transferred to C function start_kernel, which begins
initializing data structures for the kernel.

o What's executing at this point is “process 0”, which will become the “idle
process’, after doing a little more initialization.

Slide 7

Initialization — Process 0

Daemons to manage the buffer cache (bdf 1ush) and swapping (kswap)

are started.

Filesystems are initialized and the root filesystem mounted.

An attempt is made to connect with the console and open file descriptions for
Slide 8 stdin, stdout, stderr.

An attempt is made to execute one of /etc/init, /bin/init,
/sbin/init.




CSCI 4320 November 28, 2007

Initialization — init Program

e Aside: Unix/Linux has a notion of “run levels” — typically 1 is single-user, 3 is
text-only, 5 is graphical, etc.

e init does more initialization (including closing/reopening stdin, etc.), reads
/etc/inittalb, and “does what it says”, depending on run level. Default

Slide 9 level (for boot) is specified in /etc/inittab. Rest of the file says what to

do, depending on run level. Some of “what to do” involves running scripts in

/etc/rc.d (at least on our systems — may depend on distribution?).

e init then waits for any requests to change the runlevel (e.g., using
command init). Changing the runlevel — look again at
/etc/inittab.

e None —signiin.

Slide 10




