
CSCI 4320 September 8, 2008

Slide 1

Administrivia

• (None.)

Slide 2

Operating System Functionality

• Provide a “virtual machine”:

– Filesystem abstraction — files, directories, ownership, access rights, etc.

– Process abstraction — “process” is a name for one of a collection of

“things happening at the same time” (in effect if not in fact), including:

∗ In batch systems, user “jobs”, plus input/output spooling.

∗ In timesharing system, interactive users.

∗ In PC o/s, concurrently-executing tasks.

Here too, idea of ownership / access rights.

• Manage resources (probably on behalf of multiple users/applications):

– Memory.

– CPU cycles (one or more CPUs).

– I/O devices.



CSCI 4320 September 8, 2008

Slide 3

Overview of Hardware

• Simplified view of hardware (as it appears to programmers) — processor(s),

memory, I/O devices, bus.

• (See figure, p. 19.)

• Next few sections talk about each component — what it does (from user’s

point of view) and low-level interface to software.

Slide 4

Processors

• “Instruction set” of primitive operations — load/store, arithmetic/logical

operations, control flow.

• Basic CPU cycle — fetch instruction, decode, execute.

• Registers — “local memory” for processor; general-purpose registers for

arithmetic and other operations, special registers (program counter, stack

pointer, program status word (PSW)).

• Now consider what additional features would make it easier to write an

operating system . . .



CSCI 4320 September 8, 2008

Slide 5

Interrupt Mechanism

• Very useful to have a way to interrupt current processing when an unexpected

or don’t-know-when event happens — error occurs (e.g., invalid operation),

I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally o/s code that saves other registers, re-enables interrupts, decides

what to do next, etc.

• Usually have a TRAP instruction for generating interrupt.

• Could you write an o/s without this?

Slide 6

Dual-Mode Operation, Privileged Instructions

• Useful to have mechanism to keep application programs from doing things

that should be reserved for o/s.

• Usual approach — in hardware, define two modes for processor (supervisor

and user), privileged instructions.

– Privileged instructions — things only o/s should do, e.g., enable/disable

interrupts.

– Bit in PSW indicates supervisor mode (o/s only, privileged instructions

okay) or user mode (application programs, privileged instructions not

allowed).

– When to switch modes? when o/s starts application program, when

application program requests o/s services, on error.

• Could you write an o/s without this?



CSCI 4320 September 8, 2008

Slide 7

Memory Protection

• Very useful to have a way to give each process (including o/s) its own

variables that other processes can’t alter.

• Usual approach — provide a hardware mechanism such that attempting to

access memory out of ranges generates exception/interrupt; several ways,

including:

– Limit each process to a range of memory locations; hold starting and

ending addresses in special registers.

– Partition memory into blocks, give each block a numeric key, give each

process a key, and only allow processes to access blocks if keys match.

• Could you write an o/s without this?

Slide 8

Timer

• Useful to have a way to set a timer / “alarm clock” — e.g., to get control back if

application program enters infinite loop.

• Usual approach — hardware features that tracks real time and can be set to

interrupt CPU.

• Could you write an o/s without this?



CSCI 4320 September 8, 2008

Slide 9

Multithreaded and Multicore Chips

• For many years (at least 20, to my knowledge) advocates of parallel

programming have been saying that eventually hardware designers would run

out of ways to make single processors faster — and finally it seems to be

happening.

• Basic idea — number of transistors one can put on a chip is still increasing,

but how to use them to make single processors faster isn’t clear. So, instead,

hardware designers have chosen to provide (more) hardware support for

parallelism. Two basic approaches:

– Multithreading — e.g., Intel’s “hyperthreading” basically allows fast

switching between two threads, but not true parallel execution.

– Multicore — multiple independent CPUs on a chip, possibly sharing cache.

Slide 10

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:

registers, cache, RAM, magnetic disk, magnetic tape. (See picture, p. 23.)

• Note also — some types volatile, some non-volatile.



CSCI 4320 September 8, 2008

Slide 11

Program Relocation

• At the machine-instruction level, references to memory are in terms of an

absolute number. Compilers/assemblers can generate these only by making

assumption about where program will reside in memory.

• In the very early days, programs started at 0, so no problem. Now they hardly

ever do, so we need a way to relocate programs — when loaded, or “on the

fly”.

• “On the fly” relocation uses MMU (memory management unit) — which can

provide both program relocation and memory protection.

Logically between CPU and memory, physically usually part of CPU.

A simple scheme — base and limit registers (described in text). When do

values in them need to change?

Slide 12

I/O Devices

• What they provide (from the user’s perspective):

– Non-volatile storage (disks, tapes).

– Connections to outside world (keyboards, microphones, screens, etc.,

etc.).

• Distance between hardware and “virtual machine” is large here, so usually

think in terms of:

– Layers of s/w abstraction (as with other parts of o/s).

– Layers of h/w abstraction too: most devices attached via controller, which

provides a h/w layer of abstraction (e.g., “IDE controller”).



CSCI 4320 September 8, 2008

Slide 13

I/O Basics

• CPU communicates with device controller by reading/writing device registers;

device controller communicates with device.

• Memory-mapped I/O versus I/O instructions.

• Polling versus interrupts.

• Functionality for a particular device packaged as “device driver”.

• I/O in application programs — make system call to invoke o/s services (more

about system calls later).

Slide 14

Minute Essay

• I once had a learning experience about “how DOS is different from a real o/s”.

Summary version: A program using pointers (possibly uninitialized) caused

the whole machine to lock up, so thoroughly that the only recovery was to

power-cycle.

What do you think went wrong?



CSCI 4320 September 8, 2008

Slide 15

Minute Essay Answer

• The program changed memory at the addresses pointed to by the uninitialized

pointers — and this memory was being used by the o/s, possibly to store

something related to interrupt handling. A “real” o/s wouldn’t allow this!

(Then again, the version of MS-DOS in question was supposedly written to

run on hardware that didn’t provide memory protection, so maybe it’s not

DOS’s fault.)


