
CSCI 4320 September 15, 2008

Slide 1

Administrivia

• Homework 1 on Web (linked from “Lecture topics and assignments” page).

Due next Monday.

Slide 2

Shell

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of o/s, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com; Unix sh, bash, csh, tcsh,

ksh, zsh, . . .



CSCI 4320 September 15, 2008

Slide 3

Recap — Operating System Functionality

• Two goals:

– Bridge gap between what hardware will do (very primitive) and “virtual

machine” useful for application-level programs.

– Manage physical resources on behalf of multiple applications / users.

• Major functions:

– Process management.

– Memory management.

– I/O subsystem.

– File systems.

– Security.

– Shell.

Slide 4

Operating System Structures

• Clearly o/s could involve a whole lot of code (e.g., second edition of textbook

says 29M for Windows 2000). How to structure?

• Choices include:

– Monolithic systems.

– Layered systems.

– Microkernels.

– Client-server model.

– Virtual machines.

– Exokernels.



CSCI 4320 September 15, 2008

Slide 5

Monolithic Systems

• Tanenbaum’s description in the previous edition of the textbook — “The Big

Mess”. (Not completely unstructured, but close.)

• Examples include MS-DOS, early Unix.

• Advantages? “works, sort of” — often justification is historical.

• Disadvantages? “big mess”. (Not everyone agrees, though.)

Slide 6

Layered Systems

• Idea — use layers of abstraction, just as one structures application programs.

• Examples include THE, MULTICS, OS/2, Windows NT (more so in early

releases).

• Advantages? nice separation of concerns, modularity.

• Disadvantages? tricky to plan layers, performance can be slow.



CSCI 4320 September 15, 2008

Slide 7

Virtual Machines

• Idea — o/s provides a simulation of the actual physical machine, this “virtual

machine” then runs another o/s – or several of them.

• Examples include VM/370, Windows support for old MS-DOS programs,

VMware, Mac-on-Linux, Java Virtual Machine.

• Advantages? separates multiprogramming from other concerns, emulation

aspect can be useful, useful in o/s development.

• Disadvantages? another layer, so can be slower.

Slide 8

VM/370

• Idea — provide multiple “virtual machines”, each running its own o/s, which

could be:

– “Real” o/s such as MVS (another mainframe o/s) — in turn running many

processes.

– Not-quite-real o/s CMS — interactive single-user system rather like

MS-DOS, runs under VM/370 only (not on real hardware).

• Allows sharing of physical resources among multiple “client” o/s’s:

– CPU sharing — similar to multitasking.

– I/O device sharing — share physical devices, or allow exclusive use.



CSCI 4320 September 15, 2008

Slide 9

VM/370, Continued

• How does this work? briefly:

– Client o/s’s run native code, request o/s services in the usual way

(interrupt or system call).

– Interrupt handler is part of VM/370 — so it processes I/O

requests/interrupts, errors, etc.

– Client o/s system code runs in simulated supervisor mode (really user

mode).

• Successors to VM/370 (VM/ESA, z/VM) currently being used to run many

copies of Linux on a mainframe (!).

Slide 10

Minute Essay

• There is an old joke that says that any programming problem can be solved

by adding a layer of abstraction, while any performance problem can be

solved by removing a layer of abstraction.

How (if at all) does this apply to operating systems and how they are

structured?


