
CSCI 4320 September 29, 2008

Slide 1

Administrivia

• Homework 2 to be on Web later today; due next Monday.

Slide 2

Semaphores — Recap

• Semaphore ADT:

– Value — non-negative integer.

– Two operations, up and down; both atomic.

• Last time — solutions using semaphores for mutual exclusion problem,

bounded buffer problem.



CSCI 4320 September 29, 2008

Slide 3

Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.

Slide 4

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .



CSCI 4320 September 29, 2008

Slide 5

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr()? next slide.

Slide 6

Implementing Semaphores, Continued

• Revised functions to enter, leave critical region:
enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

leave_cr:

store 0 in lock

return



CSCI 4320 September 29, 2008

Slide 7

Another Synchronization Mechanism — Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

continues, or signalled process awakens right away.

Slide 8

Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}



CSCI 4320 September 29, 2008

Slide 9

Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

• Procedures:

insert(item itm) {

if (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

if (count == 0)

wait(empty);

itm = get(B);

count -= 1;

signal(full);

}

• Does this work? (Yes.)

Slide 10

Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors . . .



CSCI 4320 September 29, 2008

Slide 11

Java’s Adaptation of the Monitor Idea

• Data for monitor is instance variables (data for class).

• Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

• wait, notify, notifyAll methods.

• No condition variables, but above methods provide more or less equivalent

functionality.

Note that the language specs for Java allow spurious wake-ups. So “best

practice” is to wait() in a loop, re-checking the desired condition. The

textbook’s bounded-buffer code doesn’t do this (?!).

Slide 12

Yet Another Synchronization Mechanism — Message
Passing

• Previous synchronization mechanisms all involve shared variables; okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.



CSCI 4320 September 29, 2008

Slide 13

Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.

Slide 14

Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.



CSCI 4320 September 29, 2008

Slide 15

Minute Essay

• Can you think of any reason to use message passing on a shared-memory

system?

Slide 16

Minute Essay Answer

• One reason might be that the programming model is in in some ways simpler.

Another might be a desire to write code that will run on either a

shared-memory system or a cluster of machines not sharing memory.


