
CSCI 4320 November 7, 2008

Slide 1

Administrivia

• Next homework to be on Web soon (I will send e-mail). Due in about a week.

Slide 2

Review — Page Replacement Algorithms

• General idea is to minimize number of page faults while keeping cost of

picking which page to replace reasonable.

• Many simple algorithms discussed. LRU and approximations seem most

promising / practical.

• A few more to discuss, most based on idea that each process has a “working

set” of pages that need to be in memory.



CSCI 4320 November 7, 2008

Slide 3

Sidebar: Demand Paging, Prepaging, and Working Sets

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?

• Most programs exhibit “locality of reference”, so a process usually isn’t using

all its pages.

• A process’s “working set” is the pages it’s using. Changes over time, with size

a function of time and also of how far back we look.

Slide 4

“Working Set” Algorithm

• Idea — steal / replace page not in recent working set. Define working set by

looking back τ time units (w.r.t. process’s virtual time). Value of τ is a tuning

parameter, to be set by o/s designer or sysadmin.

• Implementation:

– For each entry in page table, keep track of time of last reference.

– When we need to choose a page to replace, scan through page table and

for each entry:

If R=1, update time of last reference.

Compute time elapsed since last use. If more than τ , page can be

replaced.

– If we don’t find a page to replace that way, pick the one with oldest time of

last use. If a tie, pick at random.

• How good is this? Good, but could be slow.



CSCI 4320 November 7, 2008

Slide 5

“WSClock” Algorithm

• Idea — efficient-to-implement variation of previous algorithm, based on

circular list of pages-in-memory for process. (Carr and Hennessy.)

• Implementation — like previous algorithm, but when we need to pick a page

to replace, go around the circle and:

– If R=1, update time of last use. Compute time since last use.

– If time since last use is more than τ and M=1, schedule I/O to write this

page out (so it can maybe be replaced next time — M bit will be cleared

when I/O completes). No need to block yet, though.

– If time since last use is more than τ and M=0, replace this page.

The idea is to go around the circle until we find a page to replace, then stop.

(If we get all the way around the circle, we’ll pick some page with M=0.)

• How good is this? Makes good choices, practical to implement, apparently

widely used in practice.

Slide 6

Review — Page Replacement Algorithms

• Nice summary in textbook (table at end of section 3.4).

• Author says best choices are aging, WSClock.



CSCI 4320 November 7, 2008

Slide 7

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not

always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page

replacement algorithms.

• Modeling based on simplified version of reality — one process only, known

inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate

number of page faults.

• How is this useful? can compare different algorithms, and also determine if a

given algorithm is a “stack algorithm” (more memory means fewer page

faults).

Slide 8

Paging — Other Design Issues

• In deciding which page to replace, consider all pages (“global allocation”), or

just those that belong to the current process (“local allocation”)?

Generally, global approach works better, but not all page replacement

algorithms can work that way (e.g., WSClock). Hybrid strategy — combine

local approach with some way to vary processes’ allocations.

• What happens if combined working sets of all processes don’t fit into

memory? “Thrashing”.

What to do? temporarily “swap out” some processes, or other forms of “load

control”.

• Maintaining a supply of free frames — desirable, could do by having a “paging

daemon” in background.



CSCI 4320 November 7, 2008

Slide 9

Paging — Other Hardware Issues

• What if page to be replaced is waiting for I/O? probably trouble if we replace it

anyway.

• One solution — allow pages to be “locked”.

• Another solution — do all I/O to o/s pages, then move to user pages.

Slide 10

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.



CSCI 4320 November 7, 2008

Slide 11

Minute Essay

• If process p0’s working set totals 128M, and process p1’s working set totals

160M, and you have 256M of real memory, what will happen if you run p0 and

p1 at the same time? (I.e., do they run well together?)

Slide 12

Minute Essay Answer

• Since the combined working sets of the two processes exceeds the size of

main memory, the likely result of trying to run them at the same time is lots of

paging, and thus poor performance. (We might have this problem even with

slightly smaller working sets, since some of real memory needs to be

reserved for the operating system itself.)


