
CSCI 4320 November 10, 2008

Slide 1

Administrivia

• Homework 5 on the Web. Due a week from today. Short! (If you skip the

optional programming problem.)

Slide 2

Shared Pages, Revisited

• We talked already about how to using paging to allow processes to share part

of their address spaces.

• One use for this might be to optimize operations such as message-passing

that involve multiple address spaces.

• Another use — perhaps the most common one — is to allow processes to

share code. Fairly straightforward how this works if two processes are running

the same program (just share the pages that contain code). A somewhat

more complex use, however . . .



CSCI 4320 November 10, 2008

Slide 3

Shared Libraries

• Idea of shared libraries is allow another kind of code sharing — not whole

programs, but individual functions. “Shared libraries” in UNIX-speak, “DLLs”

in Windows-speak.

• An additional advantage of doing this is that functions can be updated without

recompiling all programs that use them. (Then again, this can be risky!

UNIX-like systems partially solve this problem by allowing multiple copies of

the file containing the library code to coexist.)

• Details of how to make this work are worth thinking about . . .

Slide 4

Shared Libraries, Continued

• Review what happens when you compile a program to produce an

executable: Translate high-level code into object code, then “link” with other

object code to produce something that can be loaded into memory and run.

Programs such as gcc do this in a way that’s invisible when it works (but may

lead to errors that confuse beginners).

• To make the shared-library-function idea work, the linker must link in

something — a “stub” function, to be further resolved at runtime. Object code

for the shared-library functions may need to be compiled with special flags.

• Some systems allow deferring even more until runtime — e.g., Linux

“dynamic linking loader” (see function dlopen).



CSCI 4320 November 10, 2008

Slide 5

One More Memory Management Strategy —
Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)

Slide 6

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.



CSCI 4320 November 10, 2008

Slide 7

Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.

Slide 8

Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for o/s.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.



CSCI 4320 November 10, 2008

Slide 9

Minute Essay

• Anything about memory management you’d like to hear more about / have

clarified?


