CSCI 4320 December 3, 2008

Administrivia

o Reminder: Homework 6 due Friday.

o Homework 7 on Web; due Monday.

Slide 1
Deadlocks — Introduction
o Some resources should not be shared — among processes, computers, etc.
e To enforce this, o/s (or whatever) provides mechanism to give one process at
a time exclusive use, make others wait.
e Possibility exists that others will wait forever — deadlock.
Slide 2

CSCI 4320 December 3, 2008

Resources

e “Resource” is anything that should be used by only one process at a time —

hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, particular database record) or non-unique (e.g., one
block of a fixed-size disk area such as swap space).

Slide 3 o Preemptible versus non-preemptible — preemptible resources can be taken
away from current owner without causing something to fail (e.g., memory);

non-preemptible resources can't (e.g., hardware device).
o Normal sequence for using a resource — request it, use it, release it. If not
available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if
processes aren'’t disciplined.

. J

4)

Deadlocks — Definitions and Conditions

e Definition — set of processes is “deadlocked” if each process in set is waiting
for an event that only another process in set can cause.
e Necessary conditions:

— Mutual exclusion — resources can be used by at most one process at a
Slide 4 time.

— Hold and wait — process holding one resource can request another.
— No preemption — resources cannot be taken away but must be released.

— Circular wait — circular chain of processes exists in which each process is
waiting for resource held by next.

o Modeling deadlock — “resource graphs”.

e What do about them? Various approaches.

. J

CSCI 4320 December 3, 2008

(What To Do About Deadlocks — Nothing)

e One strategy for dealing with deadlocks — “ostrich algorithm” (ignore
potential for deadlocks, hope they don’t happen).

e Does this work?

Slide 5
Do Nothing, Continued
e Doesn't always work, of course.
e But simple to implement, and in practice works most of the time.
Slide 6

CSCI 4320 December 3, 2008

What To Do About Deadlocks — Detection and Recovery

How to detect deadlocks — DFS on resource graph, (or if more than one

resource of each type, algorithm from text).

When to check for deadlocks:

— Every time a resource is requested.
Slide 7 — At regular intervals.

— When CPU uitilization falls below threshold.

What to do if deadlock is found?

— Preemption.
— Rollback.

— Process termination.

e Does this work?

Detection and Recovery, Continued

o Does work.

e But potentially time-consuming, and “what to do” choices aren’t very

attractive!

Slide 8

CSCI 4320 December 3, 2008

4)
What To Do About Deadlocks — Avoidance

o Can base on idea of “safe” states (in which it's possible to schedule to avoid
deadlock) versus “unsafe” states (in which it's not). Idea is to avoid unsafe

states.

e “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for
Slide 9 resource if it leads to unsafe state.

e Does this work?

Avoidance, Continued

o Does work.

e But not much used because it assumes a fixed number of processes,
resource requirements known in advance.

Slide 10

CSCI 4320 December 3, 2008

(
What To Do About Deadlocks — Prevention

e Idea here is to make it impossible to satisfy one of the four conditions for
deadlock:

— Mutual exclusion — don’t allow more than one process to use a resource.

E.g., define a printer-spool process to manage printer.

Slide 11 — Hold and wait — require processes to request all resources at the same
time and either get them all or wait.

— No preemption — allow preemption.
— Circular wait — impose strictly increasing ordering on resources, and insist

that all processes request resources “in order”.

e Do these work?

Prevention, Continued

e Don't allow more than one process to use a resource:
Solves immediate problem but may produce others.

e Require processes to request all resources at the same time and either get
them all or wait:

Slide 12 Works but may not be possible or efficient.

e Allow preemption.
Not usually possible/desirable.

e Impose strictly increasing ordering on resources, and insist that all processes
request resources “in order”.

Works, but finding an ordering may be difficult.

CSCI 4320 December 3, 2008

Deadlocks — Related Issues

e Classical description is in terms of “resources”, but other kinds of deadlock

are possible (e.g., involving communication).

e Other situations that aren’t classical deadlock but are also not good include

“livelock” and “starvation” (see text).

Slide 13
Deadlocks — Summary
e Take-home message — there’s some interesting theory related to this topic,
but not a lot of practical advice, except for deadlock prevention.
Slide 14

CSCI 4320 December 3, 2008

o What's the smallest number of resources needed to have a deadlock?

Slide 15

e Two — with only one, a process may wait a long time for another process to

release it, but that's not true deadlock.

Slide 16

